$$(t+1)u_t=u_{xx}$$Assuming a separable solution, we let $u(x,t)=F(x)G(t)$ so $u_t=F(x)G'(t),u_{xx}=F''(x)G(t)$ thus:$$(t+1)F(x)G'(t)=F''(x)G(t)\\(t+1)\frac{G'(t)}{G(t)}=\frac{F''(x)}{F(x)}=-\lambda^2\\G'(t)+\frac{\lambda^2}{t+1}G(t)=0\\F''(x)+\lambda^2 F(x)=0$$Clearly $F(x)=C_1\cos\lambda x+C_2\sin\lambda x$. To determine $G'(t)$ observe we can multiply by $\mu=\exp\left(\lambda^2\int\dfrac1{t+1}\,dt\right)=(t+1)^{\lambda^2}$ giving us:$$G(t)=\frac{C_3}{(t+1)^{\lambda^2}}$$Given our boundary conditions:$$u(0,t)=u(\pi,t)=0\\u(x,0)=\sin x+7\sin6x$$hence $F(0)=0$ and therefore $C_1=0$ i.e. $F(x)=C_2\sin\lambda x$.
The key is to consider that since $F(\pi)=0\Leftrightarrow C_2\sin\lambda x=0$ we have either $C_2=0\Leftrightarrow u(x,t)=0$ or $\sin\lambda\pi=0$ hence $\lambda\in\mathbb{Z}$. Given the infinite number of eigenvalues $\lambda$, we write:$$F(x)=\sum_{\lambda=0}^\infty b_\lambda\sin\lambda x$$and so it follows with $a_\lambda=C_2C_3b_\lambda$ $$u(x,t)=F(x)G(t)=\sum_{\lambda=0}^\infty a_{\lambda}\frac1{(t+1)^{\lambda^2}}\sin\lambda x\\u(x,0)=\sum_{\lambda=0}^\infty a_\lambda\sin\lambda x\\\sin x+7\sin6x=\sum_{\lambda=0}^\infty a_\lambda\sin\lambda x$$By the orthogonality of $\sin\lambda x$ we have $a_1=1,a_6=7$ and other $a_\lambda=0$. Thus our solution is given by$$u(x,t)=\frac1{t+1}\sin x+\frac7{(t+1)^{36}}\sin 6x$$
Wolfram agrees. Apologies if I left anything unclear -- let me know and I will try to explain further. I suggest reading up on elementary Sturm-Liouville theory.