@mjqxxxx 's solution seems fine fine but here is an alternative simpler approach i found.
$$\sec^4\frac{3\pi}9 \implies \sec^4\frac{\pi}3 = 16$$
for $$\theta=\frac{\pi}{9},\frac{5\pi}{9},\frac{7\pi}{9} \implies \cos3\theta=\frac 12$$
$$\cos3\theta=4\cos^3\theta-3\cos\theta\qquad \cos\theta=t$$
$$\implies 4t^3-3t=\frac 12 \implies 8t^3-6t=1\qquad\dots(1)$$
has roots for
$$t=\cos\frac{\pi}9,\;\cos\frac{5\pi}9,\;\cos\frac{7\pi}9$$
Squaring $(1)$:
$$64t^6+36t^2-96t^4=1\qquad\dots(2)$$
has roots for
$$t=\cos\frac{\pi}9,\;\cos\frac{\pi}9,\;\cos\frac{5\pi}9,\;\cos\frac{5\pi}9,\;\cos\frac{7\pi}9,\;\cos\frac{7\pi}9$$
substituting:
$t=\frac 1{\sqrt x}$ in $(2)$
$$\implies x^3-36x^2+96x-64=0$$
has roots for $$x=\sec^2\frac{\pi}9,\;\sec^2\frac{5\pi}9,\;\sec^2\frac{7\pi}9$$
Now,
$$\sec^2\frac{\pi}9+\sec^2\frac{5\pi}9+\sec^2\frac{7\pi}9=36$$
$$\sec^2\frac{\pi}9\sec^2\frac{5\pi}9+\sec^2\frac{\pi}9\sec^2\frac{7\pi}9+\sec^2\frac{5\pi}9\sec^2\frac{7\pi}9=96$$
$$\sec^4\frac{\pi}9+\sec^4\frac{5\pi}9+\sec^4\frac{7\pi}9=\left(\sec^2\frac{\pi}9+\sec^2\frac{5\pi}9+\sec^2\frac{7\pi}9\right)^2 - 2\left(\sec^2\frac{\pi}9\sec^2\frac{5\pi}9+\sec^2\frac{\pi}9\sec^2\frac{7\pi}9+\sec^2\frac{5\pi}9\sec^2\frac{7\pi}9\right)$$
$$\implies \sec^4\frac{\pi}9+\sec^4\frac{5\pi}9+\sec^4\frac{7\pi}9 = 1104$$
So,
$$\sec^4\frac{\pi}9+\sec^4\frac{3\pi}9+\sec^4\frac{5\pi}9+\sec^4\frac{7\pi}9=1104+16=1120$$