I tried to find a closed form for the series $$ \sum_{n=2}^\infty \frac{1}{n \sqrt{n^2-1}} $$ I got another form for the series by using the known series $$\frac{1}{\sqrt{n^2-1}}=\frac{1}{n\sqrt{1-n^{-2}}}=\sum_{k=0}^\infty \binom{2k}{k} \frac{1}{4^kn^{2k+1}} , \forall n>1$$ So $$ \sum_{n=2}^\infty \frac{1}{n \sqrt{n^2-1}}=\sum_{k=0}^\infty\binom{2k}{k} 2^{-2k} \left(\zeta(2k+2)-1 \right) $$ if there is no closed form can we get its integral representation ?
EDITION
here we have $$ \binom{2k}{k} 2^{-2k}=\frac{2}{\pi}\int_0^\infty \frac{1}{(x^2+1)^{k+1}} dx$$ then $$ \sum_{n=2}^\infty \frac{1}{n \sqrt{n^2-1}}=\frac{2}{\pi} \int_0^\infty \sum_{k=1}^\infty \frac{\zeta(2k)-1}{(x^2+1)^{k}} dx $$ and here we have the generation function of $\zeta(2n)$ $$ \sum_{n=1}^\infty \zeta(2n) x^n = \frac{1}{2} -\frac{\pi \sqrt{x}}{2} \cot(\pi \sqrt{x}) $$ finally $$ \sum_{n=2}^\infty \frac{1}{n \sqrt{n^2-1}}=\frac{1}{\pi} \int_0^\infty \left(1-\frac{2}{x^2}-\frac{\pi}{\sqrt{x^2+1}} \cot \left(\frac{\pi}{\sqrt{x^2+1}} \right) \right) dx$$