What I was trying to do, was to prove if $\lim _{n \to \infty} a_n = L$ then $\lim _{n \to \infty} \frac{ \sum_{k=1}^{n}a_k}{n} = L$ is true or not. After some trials and errors, I found the series $a_k=k^{\frac{1}{k}}$ where $$\lim _{n \to \infty} n^{\frac{1}{n}}=1$$ and according to wolframalpha, $$\lim _{n \to \infty} \frac{ \sum_{k=1}^{n}k^{\frac{1}{k}}}{n}=0$$but I doubt this, as $x^{\frac{1}{x}}>1$ for $x>1$ thus $\lim _{n \to \infty} \frac{ \sum_{k=1}^{n}k^{\frac{1}{k}}}{n}\geq1$
I would appreciate proof of the proposition, or counterexample, or an extra reasons on why $\lim _{n \to \infty} \frac{ \sum_{k=1}^{n}k^{\frac{1}{k}}}{n}=0$