I have a nice description of the geodesics of hyperbolic space in the hyperboloid model as intersections of $2$-planes with the hyperboloid, as given in this answer. As discussed there, if such a geodesic goes through $p$ with unit velocity $v$, it is parametrized by
$$\gamma_v^p(t) = (\cosh t)p + (\sinh t)v.$$
Moreover, I know how to map the hyperboloid model to the Poincaré ball and half-space models as in this answer:
\begin{align*} \alpha:\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{pmatrix} &\mapsto \frac1{y_0+1} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{pmatrix} =: \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} \\ \beta:\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} &\mapsto \frac{2}{1-2x_n+\lVert x\rVert^2} \begin{pmatrix}x_1\\ x_2\\ \vdots\\ x_{n-1}\\ 1-x_n\end{pmatrix} - \begin{pmatrix}0\\ 0\\ \vdots\\ 0\\ 1\end{pmatrix} =: \begin{pmatrix}z_1\\ z_2\\ \vdots\\ z_{n-1}\\ z_n\end{pmatrix} \end{align*}
I’d like to check that the images of the geodesics in the hyperboloid model under these maps are what I expect (circles intersecting the boundary of the ball perpendicularly in the ball model and vertical lines and half-circles in the half-space model). How could I do this?
Attempt: To map a geodesic $\gamma_v^p$ from the hyperboloid model to the Poincaré ball model, I first write $\gamma_v^p$ in coordinates. To simplify the task, I first perform a rotation of $\mathbb R^{1,n}$ in the last $n$ coordinates to get $p$ in the form $p=(p_0,p_1,0,0,…,0)$, where $p_1 = \sqrt{p_0^2-1}$ and $p_0\ge 1$. Using $\langle p, v\rangle = 0$ and $\langle v, v\rangle = 1$ and performing a second rotation in the last $n-1$ coordinates, I also get $v=(v_0,v_1,v_2,0,0,…,0)$ where $v_1=\frac{v_0p_0}{\sqrt{p_0^2-1}}$ and $v_2=\sqrt{\frac{p_0^2+v_0^2-1}{p_0^2-1}}$. Then, $$\alpha(\gamma_v^p(t)) = \left(\frac{(\cosh t)\sqrt{p_0^2-1}+(\sinh t)\frac{v_0p_0}{\sqrt{p_0^2-1}}}{(\cosh t)p_0+(\sinh t)v_0+1},\frac{(\sinh t)\sqrt{\frac{p_0^2+v_0^2-1}{p_0^2-1}}}{(\cosh t)p_0+(\sinh t)v_0+1},0,0,…,0\right).$$ How can I see from this equation that $\alpha(\gamma_v^p(t))$ parametrizes the intersection of a circle with the ball?