Trying to show for $\gamma \in (0,1]$ and some natural number $d$ that $$\lim_{x \to 0} \frac{\exp[-x^{-\gamma}]}{x^d}=0$$.
I've tried setting $t=x^{-\gamma}$ and you get for the right side limit
$$\lim_{t \to \infty} e^{-t}t(1/t)^{\frac{\gamma-d}{\gamma}} = \lim_{t \to \infty} e^{-t}t^{1-\frac{\gamma-d}{\gamma}} = \lim_{t \to \infty}$$