How I tried it :
$\lim_{x \to 0} (\ln^2(x) \cdot (e^x+x^2-x-1)) = \lim_{x \to 0} (\frac{(e^x+x^2-x-1)} {\frac{1}{\ln^2(x)}})$ this limit is in Indeterminate form and bt using L'Hôpital's rule we get
$\lim_{x \to 0} (\frac{\frac{d}{dx}(e^x+x^2-x-1)} {\frac{d}{dx}(\frac{1}{\ln^2(x)})})= \lim_{x \to 0} \frac{e^x+2x-1}{-\frac{2}{x \ln ^3(x)} }=\lim_{x \to 0} \frac{x \ln^3(x)(e^x+2x-1}{-2} $ which leads to nowhere.
Any help would be appreciated !
EDIT
I tried to use the fact that
$$(\ln^2(x) \cdot (e^x+x^2-x-1)) = x\ln^2(x) \cdot \left({\frac{e^x-1}{x}}\right)+x^2\ln^2(x)-x\ln^2(x) $$
that becomes
$$x\ln^2(x) \cdot \left (\left(\frac{e^x-1}{x} \right) +x-1 \right)$$
Then let $t=\left (\left(\frac{e^x-1}{x} \right) +x-1 \right)$ when $x \to0^+ \implies t \to 0^+$
So now we just have to evaluate the limit of $u=x\ln^2(x) $ whejn $x \to 0^+$ which is $0^+ \times + \infty = + \infty$
Then the original limit is of the form $0^+ \times +\infty$
so we write is as
$$\lim_{x \to 0} \left( \frac{ (e^x+x^2-x-1)}{\frac{1}{x\ln^2(x)}}\right)$$
using L'Hôpital's rule
$$\lim_{x \to 0} \left( \frac{ (e^x+2x-1)}{\frac{\ln(x)+1}{x^2 \ln^2(x)}}\right)= \lim_{x\to0^+} \left ( \frac{(e^x+2x-1)x^2 \ln^2(x)}{\ln(x)+1}\right )$$
What am I supposed to do after ? Or did I even use that information correctly?