It arises simply by iterating the common (reverse) divisibility test for $37$ in radix $100,\,$ viz.
$$\quad\ \ \ 37\mid \color{#c00}{100}\:\!a\!+\!b\!\!\overset{\times\ \color{#0a0}{10}\!}\iff 37\mid \color{#0a0}{10}\:\!b\!+\!a\quad [{\rm by}\ \color{#c00}{100}\cdot \color{#0a0}{10}\equiv_{37}1]$$
Iterated, it reverses the digits $\,(a,b\to b,a)\,$ and inverts radix $\color{#c00}{100}\to \color{#0a0}{10}\equiv_{37} 100^{-1}\,$ e.g.
$$\begin{align} &\qquad 37\mid 407\ =\!\!\overbrace{47_{\color{#c00}{100}}\!\iff 37\mid 74_{\:\!\color{#0a0}{10}}}^{\large \textbf{reverse}\text{ digits},\ \rm\color{#c00}{in}\color{#0a0}{vert} \ radix}\\[.5em]
&37\mid 4030201\!=\! {4321_{\color{#c00}{100}}}\!\iff 37\mid 1234_{\:\!\color{#0a0}{10}}\\[.5em]
{\rm by}\ \bmod & 37\!:\, 4030201\!=\! 4321_{\color{#c00}{100}}\,\equiv\, 1234_{\color{#0a0}{10}}\ \ \text{[by Hint below]}
\end{align}\qquad\qquad\ \ $$
It's easy to prove using the polynomial form of radix rep, and its reversed (reciprocal) polynomial.
$$\!\begin{align}
{\bf Hint}\!:\,\ \bmod \ \color{darkorange}{t^3}\:\!&\color{darkorange}{\equiv 1}\!:\ \ \ \ \color{#0af}{t\equiv t^{-2}},\,\ \color{#888}{t^6\equiv 1}\ \ \ \ [\color{darkorange}{\,t\!=\!10}\ \rm\ in\ OP]\\[.3em]
{\rm thus}\, \ \ \ \ \ &\ \ \ \ \ \ \ \ \ \ p(\color{#0af}{t})\ \ \ \,=\ \, \color{#c00}a^{\vphantom .}\:\!t^3 + \color{#c00}b^{\vphantom .}\:\!t^2+ \color{#c00}c\,t\, +\, \color{#c00}d\\[.3em]
&\equiv\ \color{grey}{t^6\:\!} p(\color{#0af}{t^{-2}})\, \equiv \ \color{#0a0}a\ \,+\, \ \color{#0a0}b^{\vphantom .}\:\!t^2 + \color{#0a0}c^{\vphantom .}\:\!t^4+\color{#0a0}d^{\vphantom .}t^6\\[-.1em]
\overset{\color{darkorange}{\large t\ =\ 10_{\vphantom{.}}}}\Longrightarrow\ \ \ \ &\!\!\!\!\!{\rm \color{#c00}{abcd}\equiv \color{#0a0}{d0c0b0a}}\!\!\!\pmod{\!{\bf 37}\cdot 27=\color{darkorange}{10^3\!-\!1}}\\[.2em]
{\rm e.g.}\quad\ \ &\!\!\!\!\!\color{#c00}{1234}\equiv \color{#0a0}{4030201\! = \!4321_{100}}
\end{align}\qquad\qquad\qquad\ $$
Generally reversed $\,\tilde p(t^2)= \color{#888}{t^{2k}}\:\!p(\color{#0af}{t^{-2}})\equiv \color{#888}{t^j}p(\color{#0af}t)\pmod {\!\color{darkorange}{t^{3}\!-\!1}},\, $ for $\,k \!=\! \deg\:\! p,\,$ $\,\color{#888}{j={2k}\bmod 3}.\,$ This is a slight twist (squared argument) on the formula for the reversed (reciprocal) polynomial.
The pesky (shift) multiplier $\:\!\color{#888}{t^{2k}}\:\!$ disappears when $\,3\mid \color{#888}k,\,$ which we can assume wlog by appending $\color{#888}{\rm zero}$ digits as need be, e.g. with $\rm\,abcd = \color{#888}{00}74\,$ in $\:\!\rm\color{#c00}{H}\!=\!$ Hint we get the OP claim as follows
$$\bmod 37\!:\,\ 0\equiv \color{#888}{00}74_{10}\overset{\rm\color{#c00}{H_{\vphantom{|}}}}\equiv 47\color{#888}{00}_{100},\,\ {\rm so}\:\ 37\mid 47_{100}=\color{0a0}{407}_{10}\qquad\ \ \ $$
since we can ignore final $\rm\color{#888}{zeros}\,$ (by $\,37\mid \color{#888}{10^j}\:\!m\!\iff\! 37\mid m\,$ by Euclid's Lemma & $(37,\color{#888}{10})\!=\!1$).
Thus such divisibility tests are special cases of the above reverse digits congruence. Just like in casting out nines, the congruence form is more powerful than the divisibility test form, since the congruence applies more generally to arbitrary mod arithmetic (vs. only to $\:\!\equiv 0\:\!$ tests), e.g. it also yields congruences such as $\, 1\equiv 75_{10}\equiv5700_{100} \pmod{\!37}\,$ [= increment of above].