4

I start by rewriting the denominator, $2x^4+3x^2+5$, as a squared term plus a constant. To do this, we notice that the first two terms already have a common factor of $2x^2$. We can complete the square by taking half of the coefficient of our $x^2$ term, squaring it, and adding it to both the numerator and denominator.

Since the coefficient of our $x^2$ term is $3$, half of it would be $\frac{3}{2}$, and squaring it gives us $\frac{4}{9}$. So we add $\frac{4}{9}$ to both the numerator and denominator.

I started like that but I couldn't go further. Can you please help me to solve it.

Red Five
  • 3,164
  • 1
    This process is called Completing the Square and requires special care when the leading coefficient is not $1$. There are many resources with examples and practice problems at the tips of your fingers when you search this phrase. – Sammy Black Mar 27 '24 at 23:37
  • Attempting to factor the quartic by completing the square leads to: $ax^{4}+bx^{2}+c=\frac{\left(2ax^{2}+b\right)^{2}-\left(b^{2}-4ac\right)}{4a}=\frac{\left(2ax^{2}+b-\sqrt{b^{2}-4ac}\right)\left(2ax^{2}+b+\sqrt{b^{2}-4ac}\right)}{4a}$. You can see from the square roots that this strategy runs into problems when $b^{2}-4ac<0$, like the quartic in your problem. – David H Mar 27 '24 at 23:47

3 Answers3

8

Substitute $t=\sqrt[4]{\frac25}x$, along with $a_{\pm}= \sqrt{ 2\pm\frac3{\sqrt{10}}}$ \begin{align} &\int\frac1{2x^4+3x^2+5}dx = \frac1{\sqrt[4]{250}}\int\frac1{t^4+\frac3{\sqrt{10}} t^2 +1}dt\\ =&\ \frac1{2\sqrt[4]{250}}\int\frac{1+t^2}{t^4+\frac3{\sqrt{10}} t^2 +1} + \frac{1-t^2}{t^4+\frac3{\sqrt{10}} t^2 +1}\ dt\\ =&\ \frac1{2\sqrt[4]{250}}\int\frac{d(t-\frac1t)}{(t-\frac1t)^2+a_+^2} -\frac{d(t+\frac1t)}{(t+\frac1t)^2-a_-^2}\\ =&\ \frac1{2\sqrt[4]{250}} \bigg( \frac1{a_+}\tan^{-1}\frac{t-\frac1t}{a_+} + \frac1{a_-}\coth^{-1}\frac{t+\frac1t}{a_-}\bigg) \end{align}

Quanto
  • 120,125
  • 1
    It is tempting, when faced with a quartic that has no odd powers, to make the substitution $u=x^{2}$, but the absence of the derivative ($2x$) in the integrand means this will likely go nowhere. – Red Five Mar 28 '24 at 03:20
8

Another solution

Write $$2 x^4+3 x^2+5=2(x^2-a)(x^2-b)$$ with $$a=-\frac{1}{4} \left(3+i \sqrt{31}\right) \qquad \text{and} \qquad b=-\frac{1}{4} \left(3-i \sqrt{31}\right) $$ Use partial fraction decomposition $$\frac 1 {2 x^4+3 x^2+5}=\frac{1}{2 (a-b)}\left(\frac{1}{x^2-a}-\frac{1}{x^2-b} \right)$$ So, two simple integrals

  • 2
    I admit it's correct, but $\int{\frac{dx}{x^2+1}}$ is known to be $\arctan(x) + C$, but you write this as $\int{\frac{dx}{x^2-i^2}}$, you write this as a sum of partial fractions and go on like this. This is obviously correct, but in the process of calculating integrals, the usage of typical complex numbers normally is avoided. – Dominique Mar 28 '24 at 12:58
  • 1
    @Dominique. Thé question is thé définition of normally . Cheers – Claude Leibovici Mar 28 '24 at 15:01
  • @ClaudeLeibovici: I am baffled by your diacritics. What does tea have to do with anything? Also, I agree with Dominique on this. – TonyK Apr 01 '24 at 13:53
  • @TonyK. French keyboard on a smartphone which I don't know to use. Replace thé third character by an "e" to obtain thé propre verson !!!i – Claude Leibovici Apr 01 '24 at 15:09
0

1. Question Summary (for Easier Reference)

Solve for the indefinite integral: $$\int \frac{dx}{2x^4 + 3x^2 + 5} \tag{Eq. 1}$$

2. Solution Steps

First find the roots of $2x^4 + 3x^2 + 5=0$ as follows: $$2x^4 + 3x^2 + 5=0\underset{implies}{\implies} \\ x^4 + \frac{3}{2}x^2 + \frac{5}{2}=0\underset{implies}{\implies} \\ \left(x^2+\frac{3}{4}\right)^2=\left(-\frac{5}{2}\right) +\left(\frac{3}{4}\right)^2 = \left(-\frac{40}{16}\right)+\left(\frac{9}{16}\right)\\ \underset{implies}{\implies} \left(x^2+\frac{3}{4}\right)^2 =\left(-\frac{31}{16}\right) \\ \underset{implies}{\implies} (x^2)_\pm =\frac{3}{4}\pm \sqrt{\left(-\frac{31}{16}\right)}= \frac{3}{4} \pm i*\sqrt{\left(\frac{31}{16}\right)} $$ $$\tag{Eqs. 2}$$

From Equation 1, and the roots found in Equation 3, now: $$\int{\frac{dx}{2x^4+3x^2+5}}= \int{\frac{1}{2}\frac{dx}{x^4+\frac{3}{2}x^2+\frac{5}{2}}}=\\ =\int{\frac{k_1}{x^2+c_1}}+\int{\frac{k_2}{x^2+c_2}}= \\ =\int{\frac{k_1}{x^2+(-(x^2)_+)}}+\int{\frac{k_2}{x^2+(-(x^2)_-)}}= \\ =\int{\frac{1}{2} \frac{\displaystyle 1} {\displaystyle \left(x^2-(x^2)_+\right) \left(x^2-(x^2)_-\right) } }$$ $$ \tag{Eqs. 3}$$

Following the Stack Exchange Mathematics Question "Prove that if $f=\frac{1}{(x-a_1)*(x-a_2)...}$, then $f=\frac{k_1}{x-a_1}+\frac{k_2}{x-a_2}+...$ where $k_1=\frac{1}{(a_1-a_2) ... }$ distinct $a_i$" and Answer, from Equations 3, $k_1$ and $k_2$ can be found as follows. Multiply Equation 4 below on the left and the right by $x^2+(-(x^2)_+)$ to yield Equation 5. $$ \int{\frac{k_1}{x^2+(-(x^2)_+)}}+\int{\frac{k_2}{x^2+(-(x^2)_-)}} =\int{\frac{1}{2} \frac{\displaystyle 1} {\displaystyle \left(x^2-(x^2)_+\right) \left(x^2-(x^2)_-\right) } } $$ $$\tag{Eq. 4}$$ $$ \int{k_1}+\int{ \frac{(k_2)({x^2+(-(x^2)_+)})} {x^2+(-(x^2)_-)} } =\int{\frac{1}{2} \frac{\displaystyle 1} {\displaystyle \left(x^2-(x^2)_-\right) } } $$ $$\tag{Eq. 5}$$ And set $x^2=(x^2)_+$ to yield the solution for $k_1$ as follows in Equation 6a and consider the symmetry of $k_1$ and $k_2$ to arrive at the solution for $k_2$ in Equation 6b as follows: $$ \int{k_1} =\int{\frac{1}{2} \frac{\displaystyle 1} {\displaystyle (x^2)_+ - (x^2)_-} } \text{ , } $$ $$\tag{Eq. 6a}$$ $$ \int{k_2} =\int{\frac{1}{2} \frac{\displaystyle 1} {\displaystyle (x^2)_- - (x^2)_+} } =-\int{k_1} $$ $$\tag{Eqs. 6b}$$ $$\tag{Eqs. 6}$$ Now consider $\int{\frac{1}{u^2+1} du}$. If $u=\tan{\theta}= \frac{\sin \theta}{\cos \theta}$ then $\frac{du}{d \theta} = \frac{d}{d\theta} \frac{\sin \theta}{\cos \theta} =\frac{1}{(\cos \theta)^2} \left((\cos \theta)^2 + (\sin \theta)^2 \right) =(\sec \theta)^2$. So $d u=(\sec \theta)^2 d \theta$. And also, there is the trignometric identity that $1+(\tan \theta)^2 = \frac{(\cos \theta)^2+(\sin \theta)^2} {(\cos \theta)^2}=\frac{1}{(\cos \theta)^2} =(\sec \theta)^2$.

$$\text{So } \int{\frac{1}{u^2+1} du}=\int{d \theta}=\theta + C \tag{Eqs. 7}$$ So basically by applying these constant definitions, and trigonometric identity for the integral $u=\frac{x}{a}$, $\int{\frac{1}{1+a^2}}$ can be solved using the following route from the on-line integral calculator:

enter image description here

Together with the "Inverse tangent of a complex variable" definition, these steps allow a solution to be completed.

I am hoping to update this article with more step-by-step specifics, but the information already here should lead to an adequate solution.

3. Solution Implementation From the Given Steps

From: $$f(x)=\int \frac{dx}{2x^4 + 3x^2 + 5} \tag{Eq. 1}$$ Solve: $$(x^2_\pm)^2+\frac{3}{2}(x^2_\pm)+\frac{5}{2}=0 \underset{implies}\implies\left((x^2_\pm) + \frac{3}{4}\right)^2 =\frac{9}{16}-\frac{5}{2}=\frac{9-40}{16}=-\frac{31}{16} \tag{Eq. 2.1}$$ Equation 2.1 implies that: $$ (x^2_\pm)=-\frac{3}{4} \pm i \frac{\sqrt{31}}{4} \text{ where }i=\sqrt{-1} \\ (x^2_+)=-\frac{3}{4} + i \frac{\sqrt{31}}{4} \text{, and } (x^2_-)=-\frac{3}{4} - i \frac{\sqrt{31}}{4} \tag{Eqs. 2.2}$$ Then $$f'(x) = \frac1{2} \frac1{\displaystyle x^2+\frac{3}{4}- i \frac{\sqrt{31}}{4}}* \frac1{\displaystyle x^2+\frac{3}{4}+ i \frac{\sqrt{31}}{4}}\tag{Eq. 2.3}$$ Now, $\int \frac1{1+x^2} dx = \arctan{x}+C$. So consider the solution of the integral $\int\frac1{a^2+x^2} dx$. Let $u=\frac{x}{a}$ then $du=\frac{dx}{a}$. So $$\int\frac1{a^2+x^2} dx= \int\frac1{a^2}\frac1{1+\left(\frac{x}{a}\right)^2} a*\frac{dx}{a} =\frac1{a}\int \frac1{1+\left(\frac{x}{a}\right)^2}*\frac{dx}{a} \\ \underset{implies}\implies \int\frac1{a^2+x^2} dx=\frac1{a}\arctan{\frac{x}{a}}+C \tag{Eqs. 2.4}$$ Now consider what is to be done with the product $\frac1{x^2-x^2_+}*\frac1{x^2-x^2_-}*$. It is simplified according to this link that can be summarized as (for distinct $a$ and $b$): $$ \frac1{u+a}*\frac1{u+b}=\frac1{a-b}*\left(\frac1{u+b}-\frac1{u+a}\right) \tag{Eq. 2.5}$$ This can be proven by multiplying the left and right of Equation 2.5 by $\left(u+a\right)*\left(u+b\right)$ yielding $1=\frac1{a-b}\left((u+a)-(u+b)\right)=1$ as was to be shown. So Equation 2.3 can be rearranged as: $$ f'(x) = \frac1{2} \frac1{\displaystyle x^2+\frac{3}{4}- i \frac{\sqrt{31}}{4}}* \frac1{\displaystyle x^2+\frac{3}{4}+ i \frac{\sqrt{31}}{4}}=\\ f'(x)=\frac{i}{\sqrt{31}}*\left( \frac1{\displaystyle x^2+\frac{3}{4}+ i \frac{\sqrt{31}}{4}}- \frac1{\displaystyle x^2+\frac{3}{4}- i \frac{\sqrt{31}}{4}} \right) \tag{Eqs. 2.6}$$
From this Stack Exchange Math reference "Inverse tangent of a complex variable" it follows: $$\tan^{-1}(z) = \frac{i}{2}\ln\left(\frac{i + z}{i - z}\right) \underset{implies}\implies \\ \underset{implies}\implies \frac1{a_\pm}\arctan\left(\frac{z}{a_\pm}\right)= \frac{i}{2}*\frac1{a_\pm}*\ln\left(\frac{i*a_\pm + z}{i*a_\pm - z}\right) \tag{Eqs. 2.7}$$ Thus, with $(a^2)_+=\frac{3}{4}+ i \frac{\sqrt{31}}{4}$ and $(a^2)_-=\frac{3}{4} - i \frac{\sqrt{31}}{4}$. And $(a)_+=\sqrt{\frac{3}{4}+ i \frac{\sqrt{31}}{4}}$, and $(a)_-=\sqrt{\frac{3}{4} - i \frac{\sqrt{31}}{4}}$. Then: $$ f(x)=\int{f'(x)}dx$$ $$ \boxed{ f(x) =-\frac1{2*\sqrt{31}}*\left( \frac1{a_+}*\ln\left(\frac{i*a_+ + x}{i*a_+ - x}\right) -\frac1{a_-}*\ln\left(\frac{i*a_- + x}{i*a_- - x}\right) \right)+C}$$ $$\textit{where C is the integration constant of the indefinite integral.} $$ $$\tag{Eqs. 2.8}$$ Further simplification of Equation 2.8 is more than likely to result in a clearer result. However, the current steps have already gone a lot further towards the end result and should be helpful for those proceeding this far at least. I hope to update this section further, time permitting.