Problem
Let $a>0$ and $B$ be a standard $\mathbb{R}$-valued Brownian motion. Define the stopping time $S_a:=\inf\{t\geq 0\ \vert \left\lvert B_t\right\rvert = a\}$. Compute $\mathbb{E}\left[e^{-\frac{\lambda^2}{2}S_a}\right]$ for $\lambda\in\mathbb{R}$.
My (edited) attempt
I noticed that the expression I needed to compute looks similiar to the martingale $Z=(e^{\lambda B_t - \frac{1}{2}\lambda^2t})_{t\geq 0}$. Consider the bounded stopping time $S_a \land n\leq n$ for some $n\in\mathbb{N}$. Doob’s optional sampling theorem yields:
\begin{align*} \mathbb{E}\left[Z_{S_a\land n}\right] = \mathbb{E}\left[Z_0\right] = \mathbb{E}\left[e^{\lambda B_0 - \frac{1}{2}\lambda^20}\right] = 1\ \text{(a.s.)} \end{align*}
We now have $\lim_{n\to\infty} Z_{S_a\land n} = Z_{S_a}$ (a.s.) and: $$\left\lvert Z_{S_a\land n}\right\rvert = e^{\lambda B_{S_a\land n} - \frac{1}{2}\lambda^2\left(S_a\land n\right)} \leq e^{\lambda B_{S_a\land n}} \leq e^{\left\lvert \lambda a\right\rvert}\ \text{(a.s.)}$$
Lebesgue’s dominated convergence theorem yields: $$\mathbb{E}\left[Z_{S_a}\right] = \mathbb{E}\left[\lim_{n\to\infty} Z_{S_a\land n}\right] = \lim_{n\to\infty} \mathbb{E}\left[Z_{S_a\land n}\right] = \lim_{n\to\infty} 1 = 1\ \text{(a.s.)}$$
Because of symmetry we have: $$x:=\mathbb{E}\left[e^{-\frac{\lambda^2}{2}S_a}1_{\left\{B_{S_a}=a\right\}}\right]=\mathbb{E}\left[e^{-\frac{\lambda^2}{2}S_a}1_{\left\{B_{S_a}=-a\right\}}\right]\quad \text{(a.s.)}$$ $$\mathbb{E}\left[e^{-\frac{\lambda^2}{2}S_a}\right] = \mathbb{E}\left[e^{-\frac{\lambda^2}{2}S_a}1_{\left\{B_{S_a}=a\right\}}\right]+\mathbb{E}\left[e^{-\frac{\lambda^2}{2}S_a}1_{\left\{B_{S_a}=-a\right\}}\right] = 2x\quad \text{(a.s.)}$$ $x$ can now be computed through the first equation: \begin{align*} 1 =\ &\mathbb{E}\left[e^{\lambda B_{S_a} - \frac{1}{2}\lambda^2S_a}\right]\\ =\ &\mathbb{E}\left[e^{\lambda B_{S_a} - \frac{1}{2}\lambda^2S_a} 1_{\left\{B_{S_a}=a\right\}}\right] + \mathbb{E}\left[e^{\lambda B_{S_a} - \frac{1}{2}\lambda^2S_a} 1_{\left\{B_{S_a}=-a\right\}}\right]\\ =\ &\mathbb{E}\left[e^{\lambda a - \frac{1}{2}\lambda^2S_a} 1_{\left\{B_{S_a}=a\right\}}\right] + \mathbb{E}\left[e^{-\lambda a - \frac{1}{2}\lambda^2S_a} 1_{\left\{B_{S_a}=-a\right\}}\right]\\ =\ &e^{\lambda a}\mathbb{E}\left[e^{-\frac{1}{2}\lambda^2S_a} 1_{\left\{B_{S_a}=a\right\}}\right] + e^{-\lambda a}\mathbb{E}\left[e^{- \frac{1}{2}\lambda^2S_a} 1_{\left\{B_{S_a}=-a\right\}}\right]\\ =\ &e^{\lambda a}x + e^{-\lambda a} x\\ =\ &\left(e^{\lambda a} + e^{-\lambda a}\right) x\quad \text{(a.s.)} \end{align*} The result is therefore: $$\mathbb{E}\left[e^{-\frac{\lambda^2}{2}S_a}\right] = \frac{2}{e^{\lambda a} + e^{-\lambda a}}\quad \text{(a.s.)} $$
Questions
- I am not very comfortable with how the result looks. Is my proof correct?
- I feel like I used a trick to obtain the result. Is there a more general way to make this computation?