5

Problem :

Let $l$ be a line which passes two points : $(1,0,0), (1,1,1)$.

And $S $ be a surface which generated by revolving line $l$ around $z$-axis.

Find a volume enclosed by surface $S$ and two planes : $z=0, z=1$.


My Attempt

Parametric equation of $l$ can be obtained easily : $$l(t) = (1,t,t)$$

And, distance $d(t)$ between $l$ and $z$-axis is same with distance between $(0,0, t), (1,t,t)$ : $$d(t) = \sqrt{1+t^2}$$

Since $l(0)=(1,0,0), l(1)=(1,1,1)$, volume $V$ what we want is : $$\begin{align} V &= \pi\int_0^1 d(t)^2 dt \\ &= \pi\int_0^1 (1+t^2)dt \\ &= \frac{4}{3}\pi\end{align}$$


Here are my main questions :

  1. Is this method legit? If not, I'd like to know what the problem is. If yes, is this method can be used anytime? (For problems which request volume enclosed by surface which generated revolving line or curve and planes.)

  2. Can I find equation of $S$ explicitly to evaluate $V$ with triple integral?

bFur4list
  • 2,775
  • 1
    In my opinion, I think that your approach is valid, and should be generalizable to rotating curves and lines. Also for anyone looking to quickly visualise the shape, here’s a 3d graph. – Soham Saha Mar 03 '24 at 05:46
  • Check this question and its answer https://math.stackexchange.com/questions/4322113/equation-of-hyperboloid-of-one-sheet-resulting-from-rotating-a-skew-line-about –  Mar 04 '24 at 07:05

1 Answers1

1

Your approach is correct. As regards the second question, the surface S is a one-sheeted hyperboloid which is an example of ruled surface. Indeed, by rotating each point $(1,t,t)$ of the line, individually, we find the disjoint circles $$x^2+y^2=1^2+t^2,\quad z=t, \quad t\in\mathbb{R}.$$ After eliminating the parameter $t$, we obtain the equation $$x^2+y^2=z^2+1.$$

enter image description here

Therefore $V$ is the volume of the solid $$D=\{(x,y,z): x^2+y^2\leq z^2+1, z\in [0,1]\}$$ and we find $$V=\int_{z=0}^1\int_{\rho=0}^{\sqrt{z^2+1}}\int_{\theta=0}^{2\pi} \rho d\theta d\rho dz=\pi\int_{z=0}^1(z^2+1)\,dz=\frac{4}{3}\pi.$$

Robert Z
  • 147,345
  • Thanks for verify. Can you append process for finding equation of $S$? – bFur4list Mar 04 '24 at 03:49
  • See my edit. The general case is discussed at the provided link about ruled surface. In particular see: https://en.wikipedia.org/wiki/Ruled_surface#Definition_and_parametric_representation – Robert Z Mar 04 '24 at 06:37