I know that there are a lot of posts that derive Frulani's integral but I would really like to know how to do it for myself. Here is the problem:
Lef $f:[0,\infty)\to\mathbb{R}$ a $C^{1}$ function such that $\displaystyle\int_{1}^{\infty} \frac{f(u)}{u}\,d u$ converges. Prove, using the Fubuni's theorem that if $0<a<b$ then $$\int_{0}^{\infty}\dfrac{f(ax)-f(bx)}{x}\, dx=f(0)\log\left(\frac{b}{a} \right)$$
Proof: By definition, $I=\displaystyle\int_{0}^{\infty}\dfrac{f(ax)-f(bx)}{x}\, dx=\lim\limits_{t\to\infty}\displaystyle\int_{0}^{t}\dfrac{f(ax)-f(bx)}{x}\, dx $. By the fact that $\dfrac{d\left(\frac{f(xy)}{x} \right)}{dy}=f'(xy)$, then follows that $\displaystyle\int_{b}^{a} f'(xy)\, dy=\dfrac{f(ax)-f(bx)}{x}$ and therefore we can write $I=\lim\limits_{t\to\infty} \displaystyle\int_{0}^{t}\left( \displaystyle\int_{b}^{a} f'(xy)\, dy\right)\, dx$. By Fubini's theorem, follows that $I=\lim\limits_{t\to\infty} \displaystyle\int_{b}^{a}\left( \displaystyle\int_{0}^{t} f'(xy)\, dx\right)\, dy=\lim\limits_{t\to\infty} \displaystyle\int_{b}^{a}\left( \dfrac{f(xy)}{y} \ \Big|_{0}^{t}\right)\, dy=\lim\limits_{t\to\infty} \displaystyle\int_{b}^{a}\left( \dfrac{f(ty)-f(0)}{y} \right)\, dy$. Then $I=\lim\limits_{t\to\infty}\left( \displaystyle\int_{b}^{a} \dfrac{f(ty)}{y}\, dy-\displaystyle\int_{b}^{a} \dfrac{f(0)}{y}\, dy \right)=\lim\limits_{t\to\infty}\left( \displaystyle\int_{b}^{a} \dfrac{f(ty)}{y}\, dy+f(0)\log\left(\dfrac{b}{a} \right) \right)$. Here is where I'm stuck. I think that the limit $\lim\limits_{t\to\infty}\left( \displaystyle\int_{b}^{a} \dfrac{f(ty)}{y}\, dy\right)$ must converge to $0$ to obtain the desired result, but I'm unable to prove that. Any hints? Thanks. Clearly I'm still not using the fact that $\displaystyle\int_{1}^{\infty} \frac{f(u)}{u}\,d u$ converges.