I am wondering if this holds in every single case: $$\sqrt{x^2} = \pm x$$
Specifically in this case: $$\sqrt{\left(\frac{1}{4}\right)^2}$$ In this one we know that the number is positive before squaring, so after removing the square and root shouldn't we just have: $$\frac{1}{4}$$
Also in a case such as this: $$\sqrt{(\sqrt{576})-8}$$ we have $$\sqrt{\pm24-8}$$ which is either $\sqrt{16}$ or $\sqrt{-32}$ but since we care about real, principal roots only, can't we say that $\sqrt{16}$ is actually $4$ but not $-4.$
Am I mistaken somewhere in my reasoning?
Thanks!