For any fixed $N \in \mathbb{N}$, let $\mathcal{S}(\mathbb{R}^N)$ be the Schwartz space.
Then, it is well-known that $\mathcal{S}(\mathbb{R}^N)$ is a Fréchet space with the seminorms: \begin{equation} \lVert f \rVert_{n, \alpha} := \sup_{ x \in \mathbb{R}^N } (1 + \lvert x \rvert^n) \lvert \partial^\alpha f \rvert \end{equation} where $n$ is any non-negative integer and $\alpha$ is any multi-index on $(x_1, \cdots, x_N)$.
Now, I wonder if it is possible to find a collection of seminorms $\lVert \cdot \rVert_m$ for nonnegative intergers $m$ giving the same topology on $\mathcal{S}(\mathbb{R}^N)$ as $\lVert \cdot \rVert_{n, \alpha}$'s but further satisfing the "graded" property \begin{equation} \lVert \cdot \rVert_0 \leq \lVert \cdot \rVert_1 \leq \lVert \cdot \rVert_2 \leq \cdots. \end{equation}
A possible candidate I have come up with is the following: \begin{equation} \lVert f \rVert_m := \sum_{ n,\lvert \alpha \rvert \leq m} \lVert f \rVert_{n, \alpha} \end{equation}
However, I am not fully sure if these seminorms indeed give rise to the same Fréchet topology as $\lVert \cdot \rVert_{n, \alpha}$'s.
Could anyone please clarify for me?