The problem
Let $ν$ be a normalised discrete order function of a field $F$. Suppose that $F$ is complete. Put $$R=\left\{x\in F:v\left(x\right)\geqslant0\right\}$$ and $$ M=\left\{x\in F:v\left(x\right)>0\right\}$$ then $R/M$ is a field. Suppose that $R/M$ is finite with $q$ elements, choose $c\in F$ such that $v\left(c\right)=0$. Proof that: the sequence $\left\{c^{q^k}\right\}$ is convergent.
My try
I try to prove that the sequence is Cauchy. I want to prove that for any positive $m$, $$v\left(c^{q^n}-c^{q^{n+m}}\right)\to \infty$$ as $n\to \infty$, with speed irrelevant to $m$. Note that $$c\equiv c^{q^m} \mod M,$$ there will be a $b\in M$ such that $c-c^{q^m}=b$. Therefore for any positive $n$ $$\left(c-c^{q^m}\right)^{q^n}=b^{q^n}$$ and therefore $$v\left ( \sum_{l=0}^{q^n} \binom{q^n}{l} c^{q-l+lq^m} \right ) \geqslant q^n.$$ Put $$ \sum_{l=1}^{q^n-1} \binom{q^n}{l} c^{q-l+lq^m}=A,$$ then if $v\left(A\right)>v\left(c^{q^n}-c^{q^{n+m}}\right)$, $$ v\left(c^{q^n}-c^{q^{n+m}}\right)>v\left(A\right)= v\left ( \sum_{l=0}^{q^n} \binom{q^n}{l} c^{q-l+lq^m} \right ) \geqslant q^n;$$ and if $v\left(A\right)<v\left(c^{q^n}-c^{q^{n+m}}\right)$, then $$ v\left(c^{q^n}-c^{q^{n+m}}\right)=q^n.$$
Now my problem is: I cannot deal with the case $v\left(A\right)=v\left(c^{q^n}-c^{q^{n+m}}\right)$. Any alternative solutions or hints would be greatly appreciated. Thank you very much!