Question:
When $f \in C^2[a;b]$ we define $ \|f\|_2=\sqrt{\int_{[a;b]}|f|^{2}}$ and when $f$ is bounded on $[a;b]$ we define $\|f\|_{\infty} = \sup_{x \in [a;b]} |f(x)| $.
Is it possible that it exists a $C>0$ that verify for all continuous function on $[a;b]$; $||f||_{\infty} \leq C \|f\|_2 $ ?
Answer:
1- Let choose the set of functions $ f_k(x)=\frac{(x-a)^k}{(b-a)^k} , k \geq 1$.
Hence $ \|f_k(x)\|_2 ^2 = \int_a^b \frac{(x-a)^{2k}}{(b-a)^{2k}} dx = \frac{1}{(b-a)^{2k}} [\frac{(x-a)^{2k+1}}{2k+1}]_a^b = \frac{b-a}{2k+1} $
2- When $k \to \infty$ we have that for every $C$ we can choose: $ C \|f_k(x)\|_2 \to 0 $.
3- On an other side we have that $ \|f_k(x)\|_{\infty} = f(b)=1 $
4- Thus no matter which $C$ we can choose $ \exists K $ s.t. $ \forall k > K $ we will have $ \|f\|_{\infty} = 1 > C \|f\|_2 $
For exemple you can choose: $K = \frac{b-a-1}{2}$
Is this correct? Thank you.