Let $X = (X_1, X_2)$ be a non-negative bivariate random vector. Let $Y_i = \phi _i(X_i), i = 1, 2,$ be one-to-one transformations with $\phi_i(X_i)$ differentiable functions, and let $Y = (Y_1, Y_2)$ be a non-negative bivariate random vector connected with $X$ by the relation $Y_i = \phi_i(X_i)$.
I want to transform this integral : $$K(Y_1,Y_2)=\int_0^\infty \int_0^\infty f^2(y_1,y_2)\,dy_2\,dy_1,$$ where $f(y_1,y_2)$ is the density fucntion of $Y=(Y_1,Y_2)$.
According to the Jacobian transformation theorem, if $ Y = \phi(X) $, then the joint density function of ( Y ) can be expressed as:
$ f(y_1, y_2) = f(x_1, x_2) \left| \frac{\partial(x_1, x_2)}{\partial(y_1, y_2)} \right|=f(x_1, x_2) |J|, $
Since $Y_i = \phi_i(X_i) $, we can express the transformation as:
$ y_1 = \phi_1(x_1), $ $ y_2 = \phi_2(x_2)$
So, the Jacobian determinant simplifies to:
\begin{align*} \left| \frac{\partial(x_1, x_2)}{\partial(y_1, y_2)} \right| &= \left| \begin{array}{cc} \frac{\partial}{\partial y_1} \phi_1^{-1}(y_1) & 0 \\ 0 & \frac{\partial}{\partial y_2} \phi_2^{-1}(y_2) \end{array} \right| \\ & = \left| \frac{\partial}{\partial y_1} \phi_1^{-1}(y_1) \cdot \frac{\partial}{\partial y_2} \phi_2^{-1}(y_2) \right| =|J| \end{align*} So we have: $$K(Y_1,Y_2)=\int_0^\infty \int_0^\infty f^2(x_1,x_2) |J|^3 \,dx_2\,dx_1,$$
Is it correct? Thanks beforehand!