Prove that $$I=\int_0^1 \sqrt{\frac{1-x^2}{1+x^2}} d x>\ln 2$$
My try: $$\begin{aligned} & \forall x \in(0,1), \sqrt{1-x^2}>1-x^2 \\ & \Rightarrow \frac{\sqrt{1-x^2}}{\sqrt{1+x^2}}>\frac{1-x^2}{\sqrt{1+x^2}} \\ & \Rightarrow I>\int_0^1 \frac{\left(1-x^2\right) d x}{\sqrt{1+x^2}} \\ & \Rightarrow I>J-W \end{aligned}$$
Where $J=\int_{0}^{1} \frac{1}{\sqrt{1+x^2}}\:dx,\:W=\int_{0}^{1} \frac{x^2}{\sqrt{1+x^2}}\:dx$
Now we have $$\begin{aligned} & J=\left.\ln \left(x+\sqrt{1+x^2}\right)\right|_0 ^1 \\ & \Rightarrow J=\ln (\sqrt{2}+1) \end{aligned}$$
Also: $$\begin{aligned} W & =\int_0^1 \frac{x^2 d x}{\sqrt{1+x^2}} \\ \Rightarrow W & =\int_0^1 \sqrt{1+x^2} d x-J \\ \Rightarrow W & =\frac{x}{2} \sqrt{1+x^2}+\left.\frac{1}{2} \ln \left(x+\sqrt{x^2+1}\right)\right|_0 ^1-J \\ \Rightarrow W & =\frac{1}{\sqrt{2}}+\frac{1}{2} \ln (\sqrt{2}+1)-\ln (\sqrt{2}+1) \\ \Rightarrow W & =\frac{1}{\sqrt{2}}-\frac{\ln (\sqrt{2}+1)}{2} \end{aligned}$$
Finally $$\begin{aligned} I & >J-W \\ \Rightarrow \quad & I>\frac{3}{2} \ln (\sqrt{2}+1)-\frac{1}{\sqrt{2}}=0.6149 \end{aligned}$$
So I missed to reach the bound of $\ln 2$