Use the fact that $~(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$
So,
$$z^3 = \left[ ~\left( ~\frac{-1}{2} ~\right) + \left( ~\frac{-i\sqrt{3}}{2} ~\right) ~\right]^3$$
$$= ~\left( ~\frac{-1}{2} ~\right)^3 + 3\left( ~\frac{-1}{2} ~\right)^2\left( ~\frac{-i\sqrt{3}}{2} ~\right)
+ 3\left( ~\frac{-1}{2} ~\right)\left( ~\frac{-i\sqrt{3}}{2} ~\right)^2 + \left( ~\frac{-i\sqrt{3}}{2} ~\right)^3
$$
$$= ~\left( ~\frac{-1}{8} ~\right) + 3\left( ~\frac{1}{4} ~\right)\left( ~\frac{-i\sqrt{3}}{2} ~\right)
+ 3\left( ~\frac{-1}{2} ~\right)\left( ~\frac{-3}{4} ~\right) + \left( ~\frac{i3\sqrt{3}}{8} ~\right)
$$
$$= \left( ~\frac{-1}{8} - \frac{-9}{8} ~\right) + i\left( ~\frac{-3\sqrt{3}}{8} + \frac{3\sqrt{3}}{8} ~\right) = (1) + i(0) = 1.$$
Also, use the fact that $~(a+b)^2 = a^2 + 2ab + b^2.$
So,
$$z^2 = \left[ ~\left( ~\frac{-1}{2} ~\right) + \left( ~\frac{-i\sqrt{3}}{2} ~\right) ~\right]^2$$
$$= ~\left( ~\frac{-1}{2} ~\right)^2 + 2\left( ~\frac{-1}{2} ~\right)\left( ~\frac{-i\sqrt{3}}{2} ~\right)
+ \left( ~\frac{-i\sqrt{3}}{2} ~\right)^2
$$
$$= ~\left( ~\frac{1}{4} ~\right) + \left( ~\frac{i\sqrt{3}}{2} ~\right)
+ \left( ~\frac{-3}{4} ~\right)
$$
$$= \left( ~\frac{-1}{2} ~\right) + \left( ~\frac{i\sqrt{3}}{2} ~\right).$$
So, since $~z^3 = 1,~$ you have that for all $~n,m,k \in \Bbb{Z^+},~$ that :
$\displaystyle z^{3n} = 1^{n} = 1.$
$\displaystyle z^{3m+1} = 1^{m} \times z = z = \left( ~\frac{-1}{2} ~\right) + \left( ~\frac{-i\sqrt{3}}{2} ~\right).$
$\displaystyle z^{3k+2} = 1^{k} \times z^2 = z^2 = \left( ~\frac{-1}{2} ~\right) + \left( ~\frac{i\sqrt{3}}{2} ~\right).$
Therefore,
$$z^{3n} + z^{3m+1} + z^{3k+2}$$
$$= 1 + z + z^2 $$
$$= 1 + \left[ ~\left( ~\frac{-1}{2} ~\right) + \left( ~\frac{-i\sqrt{3}}{2} ~\right) ~\right] + \left[ ~\left( ~\frac{-1}{2} ~\right) + \left( ~\frac{i\sqrt{3}}{2} ~\right) ~\right] = 0.$$
$\underline{\text{Addendum}}$
I wasn't sure whether you would be comfortable with the following shortcut.
Since
you can conclude, with some of the already shown math omitted, that
$$1 + z + z^2 = \frac{1 - z^3}{1 - z} = 0.$$