This can be done using inclusion–exclusion.
The probability that $\ell$ particular numbers haven’t been sampled after $n$ draws of $k$ items is
$$
\left(\frac{\binom{d-\ell}k}{\binom dk}\right)^n\;.
$$
Thus, by the Generalised inclusion-exclusion principle, the probability that exactly $t=d-u$ numbers haven’t been sampled is
$$
\sum_{\ell=t}^d(-1)^{\ell-t}\binom\ell t\binom d\ell\left(\frac{\binom{d-\ell}k}{\binom dk}\right)^n\;.
$$
In your example, with $d=10$, $k=2$, $n=3$, $u=5$ and thus $t=10-5=5$, this probability is
\begin{eqnarray*}
&&\binom{10}2^{-3}\sum_{\ell=5}^{10}(-1)^{\ell-5}\binom\ell5\binom{10}\ell\binom{10-\ell}2^3
\\
&=&
\binom{10}2^{-3}\left(\binom55\binom{10}5\binom52^3-\binom65\binom{10}6\binom42^3+\binom75\binom{10}7\binom32^3-\binom85\binom{10}8\binom22^3\right)
\\
&=&
\frac{1\cdot252\cdot10^3-6\cdot210\cdot6^3+21\cdot120\cdot3^3-56\cdot45\cdot1^3}{45^3}
\\
&=&
\frac{112}{225}
\\[4pt]
&\approx&
50\%\;.
\end{eqnarray*}
For this simple case we could also have calculated the pedestrian way: Choose one of $10$ numbers to double, choose one of $3$ draws in which it doesn’t appear, choose the remaining numbers in one of $\binom94=126$ ways, and distribute them over the three draws in one of $4\cdot3=12$ ways, for a probability of
$$
\frac{10\cdot3\cdot126\cdot12}{\binom{10}2^3}=\frac{112}{225}\;.
$$
Edit in response to comment:
As usual, due to the linearity of expectation, the expectation and variance are easier to determine than the entire distribution.
The probability that a given number hasn’t been sampled after $n$ draws of $k$ items is
$$
\left(1-\frac kd\right)^n\;,
$$
so by linearity of expectation the expected number of unsampled numbers after $n$ draws is
$$
d\left(1-\frac kd\right)^n\;.
$$
To obtain the variance, let $I_j$ be the indicator variable of the event that the number $j$ hasn’t been sampled. Then $X=\sum_jI_j$ is the number of unsampled numbers, and
\begin{eqnarray*}
\mathsf E\left[X^2\right]
&=&
\mathsf E\left[\left(\sum_jI_j\right)^2\right]
\\
&=&
\mathsf E\left[\sum_jI_j^2+\sum_{i\ne j}I_iI_j\right]
\\
&=&
\mathsf E\left[\sum_jI_j+\sum_{i\ne j}I_iI_j\right]
\\
&=&
\mathsf E[X]+\sum_{i\ne j}\mathsf E\left[I_iI_j\right]
\\
&=&
d\left(1-\frac kd\right)^n+d(d-1)\left(\frac{\binom{d-2}k}{\binom dk}\right)^n
\\
&=&
d\left(1-\frac kd\right)^n+d(d-1)\left(\frac{(d-k)(d-k-1)}{d(d-1)}\right)^n
\\
&=&
d\left(1-\frac kd\right)^n+d(d-1)\left(1-\frac kd\right)^n\left(1-\frac{k}{d-1}\right)^n
\end{eqnarray*}
(where the product $I_iI_j$ is the indicator variable of the event that neither $i$ nor $j$ has been drawn), so the variance is
\begin{eqnarray*}
\mathsf{Var}\left[X\right]
&=&
\mathsf E\left[X^2\right]-\mathsf E[X]^2
\\
&=&
d\left(1-\frac kd\right)^n+d(d-1)\left(1-\frac kd\right)^n\left(1-\frac{k}{d-1}\right)^n-\left(d\left(1-\frac kd\right)^n\right)^2
\\
&=&
d\left(1-\frac kd\right)^n\left((d-1)\left(1-\frac{k}{d-1}\right)^n+1-d\left(1-\frac kd\right)^n\right)\;.
\end{eqnarray*}
In your example, with $d=10$, $k=2$, $n=3$, these are
\begin{eqnarray*}
\mathsf E[X]
&=&
10\left(1-\frac2{10}\right)^3
\\
&=&
\frac{128}{25}
\\[4pt]
&=&
5.12
\end{eqnarray*}
and
\begin{eqnarray*}
\mathsf{Var}\left[X\right]
&=&
10\left(1-\frac2{10}\right)^3\left((10-1)\left(1-\frac29\right)^3+1-10\left(1-\frac2{10}\right)^3\right)
\\
&=&
\frac{29696}{50625}
\\[4pt]
&\approx&
0.59\;.
\end{eqnarray*}