$a_n$=$\frac{1}{\sqrt{(n)(n+1)}}+\frac{1}{\sqrt{(n+1)(n+2)}}+....+ \frac{1}{\sqrt{(2n-1)(2n)}}$ this sequence can be written as $$a_n=\sum_{k=n}^{2n-1}\frac{1}{\sqrt{k(k+1)}}$$ Now, the $nth$ term of this sequence is a sequence of patial sums of the corresponding series( I think this assumption is wrong because the sum varies over $n$ to $2n-1$ (not starting from $n=1$)) .I can think of two ways to check the convergence
1st We can write $$\frac{1}{\sqrt{n(n+1)}} =\frac{n+1}{\sqrt{n(n+1)}}-\frac{n}{\sqrt{n(n+1)}}$$ and
$$\frac{1}{\sqrt{(n+1)(n+2)}} =\frac{n+2}{\sqrt{(n+1)(n+2)}}-\frac{n+1}{\sqrt{(n+1)(n+2 )}}$$... Similarly $$\frac{1}{\sqrt{(2n-1)(2n)}} =\frac{2n}{\sqrt{(2n-1)(2n)}}-\frac{(2n-1)}{\sqrt{(2n-1)(2n)}}$$ So, $$a_n =\frac{\sqrt{(n+1)}}{\sqrt{n}}-\frac{\sqrt{(n)}}{\sqrt{n+1}}+\frac{\sqrt{(n+2)}}{\sqrt{n+1}}-\frac{\sqrt{(n+1)}}{\sqrt{n+2}}+...\frac{\sqrt{(2n)}}{\sqrt{2n-1}}-\frac{\sqrt{(2n-1)}}{\sqrt{n+n}}$$ When $\lim_{n\to∞}$ $$a_n=(1-1)+(1-1)+.... +(1-1)$$ so $\lim_{n\to∞}$ is zero.
2nd (I have doubt in this) can we use series comparison test here?
Take $$u_n=\frac{1}{\sqrt{k(k+1)}}$$ & $$v_n= 1/n$$ $$\lim_{n\to\inf}=u_n/v_n=1\text{(finite & non zero)}$$
Hence $\sum{u_n}$ and $\sum{v_n}$ behaves alike , since $\sum (1/n)$ is Divergent,so $\sum{u_n}$ is. Since I have already mentioned that the summation starts varies from $n$ (not from 1) , is this reason is okay or can someone provide a better explanation for this ?