I got a quartic equation.
In the following, I'm going to show how I got the quartic equation.
Let $x:=\bar{\kappa_0}$ and $c:=\cos x$.
Let $G$ be the intersection point of $EF$ with $CD$.
Let $H$ be a point on $EF$ such that $DH\perp EF$.
Let $I$ be a point on $EF$ such that $CI\perp EF$.
Applying the law of sines to $\triangle{CEO}$, we have
$$\frac{60}{\sin(180-x)}=\frac{e}{\sin C}=\frac{CE}{\sin(x-C)}$$
So, $$CE=\sqrt{3600-e^2(1-c^2)}-ec\tag1$$
Applying the law of sines to $\triangle{DFG}$, we have
$$\sin\angle{DGF}=\frac{e\sin x}{DG}\tag2$$
Applying the law of sines to $\triangle{CEG}$, we have
$$\sin\angle{CGE}=\frac{CE\sin x}{60-DG}\tag3$$
From $(2)(3)$, we get
$$\frac{e\sin x}{DG}=\frac{CE\sin x}{60-DG}$$
so
$$DG=\frac{60e}{CE+e}\tag4$$
Applying the law of cosines to $\triangle{FDG}$, we have
$$DG^2=e^2+FG^2-2\cdot e\cdot FGc$$
which can be written as
$$DG^2-FG^2=e^2-2ecFG\tag5$$
Applying the law of cosines to $\triangle{CEG}$, we have
$$(60-DG)^2=(e+FG)^2+CE^2-2CE(e+FG)c$$
which can be written as
$$DG^2-FG^2=-3600+120DG+e^2+2eFG+CE^2-2CE(e+FG)c\tag6$$
From $(5)(6)$, we get
$$e^2-2ecFG=-3600+120DG+e^2+2eFG+CE^2-2CE(e+FG)c$$
$$FG=\frac{-3600+120DG+CE^2-2ecCE}{-2ec-2e+2CEc}=\frac{-2 e c y^2 - 2 e^2 c y + y^3 + e y^2 - 3600 y + 3600 e}{(y + e) (2c y - 2e c - 2e)}\tag7$$
where $y:=CE$.
Since $\triangle{GHD}\sim\triangle{GIC}$, we have
$$DH:CI=GH:GI\tag8$$
Since $DH=e\sin x,CI=CE\sin x$ and $GI=HI-GH=(EI-EH)-GH=CE\cos x-(EF+FH)-GH=CE\cos x-e-e\cos x-GH$, it follows from $(8)$ that
$$GH=\frac{yce-e^2
-e^2c}{y+e}$$
So, we get
$$FG=FH+GH=ec+\frac{yce-e^2
-e^2c}{y+e}\tag9$$
It follows from $(7)(9)$ that
$$\frac{-2 e c y^2 - 2 e^2 c y + y^3 + e y^2 - 3600 y + 3600 e}{(y + e) (2c y - 2e c - 2e)}=ec+\frac{yce-e^2
-e^2c}{y+e}$$
So,
$$4 e c^2 y + 2 e c y - 2 e^2 c - y^2 - 2 e y - 2 e^2 + 3600=0$$
which can be written as
$$\sqrt{3600-e^2+e^2c^2}=\frac{e(4 c^3 + 4 c^2 + 1)}{4 c^2 + 4 c - 2}$$
Squaring the both sides, we finally get
$$\color{red}{(32 e^2 - 57600)\cos^4\kappa_0 + (56 e^2 - 115200)\cos^3\kappa_0 + 4 e^2 \cos^2\kappa_0+(- 16 e^2 + 57600)\cos\kappa_0 + 5 e^2 - 14400=0}$$