Let $W_t$ standard Wiener process and $M_t=\int_0^t e^{-3W_s}dW_s$
a) Is $M_t$ well defined? Is it a martingale? Is it integrable with a square? Justify.
b) Determine $\left< M \right>_t$.
c) Determine the covariance function for the process $Y_t=\int_0^t e^{W_s}dM_s$. Why is $Y_t$ well defined?
I have a lot of questions to this task:
- Is $M_t$ well defined when $\mathbb EM_t<\infty$? Is this enough or do I need to check any other conditions?
- So how to calculate $\mathbb EM_t=\mathbb E \left( \int_0^t e^{-3W_s}dW_s \right)$?
- $M_t$ is martingale if $\mathbb EM_t<\infty$ and $\forall_{s\le t; s,t \in T} \mathbb E[M_t | \mathcal F_s]=M_s$.
My try: $$\mathbb E\left [M_t |\mathcal F_s \right]=\mathbb E \left[ M_t-M_s+M_s |\mathcal F_s \right]=\mathbb E \left[ \int_0^t e^{-3W_u}dW_u-\int_0^s e^{-3W_u}dW_u+M_s \bigg|\mathcal F_s \right]=$$ $$=\mathbb E \left[ 0+\int_s^t e^{-3W_u}dW_u+M_s \bigg|\mathcal F_s \right]$$ It is correct? Is $\mathbb E \left[ \int_s^t e^{-3W_u}dW_u \right]$ equal or not equal $0$? - $M_t$ is integrable with square when $\mathbb E |M_t|^2=\int_0^t \mathbb E (e^{-6W_s})ds<\infty$. How I can check this?
- $<M_t>=\int_0^t \left( e^{-3W_s} \right)^2dW_s$ How to calculate it?
- I have absolutely no idea how to solve c)