Consider the Galois extension $E=\mathbb{Q}(\sqrt{p_1}, \sqrt{p_2},\ldots)$ of $\mathbb{Q}$ where $p_1<p_2<\cdots$ are positive primes.
Then $\mbox{Gal}(E/\mathbb{Q})$ is $(\mathbb{Z}/2)\times (\mathbb{Z}/2)\times \cdots$ (countable infinite direct product).
This group has uncountable subgroups of order $2$.
Q. Can we explicitly find a subgroup of order $2$ which is not equal to $\mbox{Gal}(E/F)$ for some $\mathbb{Q}\subset F \subset E$ (and $[E:F]=2$)?
Any automorphism in $\mbox{Gal}(E/\mathbb{Q})$ will take $\sqrt{p}_i$ to $\pm \sqrt{p_i}$. I took the automorphism $\sigma$ which takes $\sqrt{p}_i$ to $-\sqrt{p_i}$ for all $i$. Then I thought that if $F=\mathbb{Q}(\sqrt{p_ip_{i+1}}:i=1,2,\ldots)$ then $[E:F]=2$ and this is fixed field of $\langle\sigma\rangle$. So $\langle\sigma\rangle$ corresponds to some intermediate field.