Deligne complex $\mathbb{Z}(n)$ and some other complexes can be defined as follows, for example, in this paper, wikipedia and nlab, $$\mathbb{Z}(n):=(0\rightarrow \mathbb{Z}\rightarrow \Omega^0 \rightarrow \Omega^1 \cdots \rightarrow \Omega^{n-1}\rightarrow 0)$$
$$\mathbb{R}(n):=(0\rightarrow \mathbb{R}\rightarrow \Omega^0 \rightarrow \Omega^1 \cdots \rightarrow \Omega^{n-1}\rightarrow 0)$$
$$\ \ \ \Omega^{\bullet}:=(0\rightarrow \Omega^0 \rightarrow \Omega^1 \rightarrow \Omega^2 \cdots \rightarrow \Omega^{n}\rightarrow \cdots)$$
$$\Omega^{\bullet\geq n}:=(0\rightarrow 0 \rightarrow 0 \rightarrow 0 \cdots \rightarrow \Omega^{n}\rightarrow \cdots)$$
$$\Sigma^n\Omega^{n}_{clo}:=(0\rightarrow 0 \rightarrow 0 \rightarrow 0 \cdots \rightarrow \Omega^{n}_{clo}\rightarrow 0)\ $$ where $\mathbb{R}$ stands for locally constant real valued functions. It seems to me there are some relations among these complexes, such as:
- $\Omega^{\bullet\geq n}\simeq\Sigma^n\Omega^{n}$
- $\Sigma^n\Omega^{n}_{clo} \simeq \mathbb{R}(n)$
- $\mathbb{Z}(n)$ is the homotopy pullback of $\Omega^{\bullet\geq n}\rightarrow \Omega^{n} \leftarrow \mathbb{Z}$.
These facts might be somewhat straightforward but I failed to figure out how it works. I would be appreciated for any details provided.