I found another solution, which, while much longer and complex uses some common relevant problem-solving tactics. We start by setting:
$$\sqrt{x^2 +ax +b} = r, r\in{\mathbb{Q}}$$
$$x^2 +ax +b = r^2$$
$$\implies x^2 +ax +b -r^2=0$$
But we must have: $\Delta=m^2\iff a^2 -4b +4r^2=m^2\iff a^2 -4b =m^2 -(2r)^2$ $\\$ $\iff a^2 -4b = (m-2r)(m+2r),$ for some $m\in{\mathbb{Q}}$.
Setting: $m-2r=q$ and $m+2r=\frac{a^2 -4b}{q}$, for some non-zero $q\in{\mathbb{Q}}$, we obtain:
$$(m-2r)+(m+2r)=\frac{a^2 -4b}{q} + q$$
$$\implies 2m=\frac{a^2 -4b+q^2}{q}$$
$$\implies m=\frac{a^2 -4b+q^2}{2q}$$
Using the previous result we solve for $r$:
$$m-2r = q$$
$$\implies \frac{a^2 -4b+q^2}{2q}-2r = q$$
$$\implies 2r=\frac{a^2 -4b+q^2}{2q}-q$$
$$\implies 2r=\frac{a^2 -4b-q^2}{2q}$$
$$\implies r=\frac{a^2 -4b-q^2}{4q}$$ It is now easy to verify that $\Delta \geq 0$, for every non-zero value of $q$. As such we solve for $x$ and get:
$$x_{1,2}=\frac{-a \pm\sqrt{m^2}}{2}$$
$$\implies x_{1,2}=\frac{-a \pm m}{2}$$
$$\implies x_{1,2}=\frac{-a \pm \frac{a^2 -4b+q^2}{2q}}{2}$$
$$\implies x_{1,2}=\frac{-2aq}{4q} \pm \frac{a^2 -4b+q^2}{4q}$$
$$\implies x_1 = \frac{(a^2 -2aq +q^2) -4b}{4q}, x_2 = \frac{4b-(a^2 +2aq+q^2)}{4q}$$
$$\implies x_1 = \frac{(a-q)^2 -4b}{4q}, x_2 = \frac{4b-(a+q)^2}{4q}$$
which satisfy the equation. We will also show that if $r\in{\mathbb{Q}}$ produces a rational solution to the equation $\sqrt{x^2 +ax+b}=c$, then $r$ is of the form $\frac{a^2 -4b-q^2}{4q}, q\in{\mathbb{Q}}$.
If there are any rational solutions to the equation $x^2 +ax+b -r^2 = 0$, then we must at least have: $\Delta\geq0\iff a^2 -4b +4r^2\geq0\iff r \leq -\frac{\sqrt{4b - a^2}}{2}$ or $r\geq\frac{\sqrt{4b - a^2}}{2}$ and, also $\Delta=m^2\iff a^2 -4b +4r^2=m^2$, as in the first part. If additionally, they are of the form $\frac{a^2 -4b-q^2}{4q}, q\in{\mathbb{Q}}$, then it follows that:
$$\frac{a^2 -4b-q^2}{4q} = r$$
$$\implies a^2 -4b-q^2 = 4rq$$
$$\implies q^2 + 4rq +4b -a^2 = 0$$
But we must have: $\Delta\geq0\iff (4r)^2 -4(4b-a^2)\geq0\iff 4(4r^2 -4b +a^2)\geq0$ $\\$ $\iff 4r^2 -4b +a^2\geq0$$\iff r \leq -\frac{\sqrt{4b - a^2}}{2}$ or $r\geq\frac{\sqrt{4b - a^2}}{2}$ and also, for $n=2m$, $\Delta=n^2\iff 4(a^2 -4b +4r^2)=n^2\iff a^2 -4b +4r^2=(\frac{n}{2})^2\iff a^2 -4b +4r^2=m^2$, as in the first part.
Thus we have shown that the two conditions are identical, and therefore all rational values of $r$ which produce a rational solution in the equation are of the form $\frac{a^2 -4b-q^2}{4q}$.$\square$