How to prove that $\displaystyle\int_0^1{\zeta(1-n,1-t)\ln\Gamma{(t)}}dt = \frac{H_n\zeta(-n)+\zeta’(-n)}{n}$?
For integer values Wolfram Alpha gave me solutions to the integral in the form on the right hand side, so I guessed the form.
It appears to break down when $n$ is less than around $-\frac12$. $\zeta(s,a)$ and $\zeta(s)$ are the Hurwitz zeta and Riemann zeta functions. $H_n$ are the harmonic numbers.
How can we prove it?
Additional info
In order to obtain the closed form for integer $n$, in Wolfram Alpha, we can first rewrite it in terms of the Polygamma function.
First change the zeta function to Bernoulli Polynomials for easier manipulation.
$$\begin{align} &\frac{1}{\left(n-1\right)!}\int_{0}^{1}\zeta\left(1-n,1-t\right)\ln\Gamma\left(t\right)dt \\=& \ -\frac{1}{n!}\int_{0}^{1}B_n\left(1-t\right)\ln\Gamma\left(t\right)dt \\=& \ \frac{1}{n!}\int_{0}^{1}n\left(1-t\right)^{n-1}\ln\Gamma\left(t\right)dt-\frac{1}{n!}\int_{0}^{1}B_n\left(2-t\right)\ln\Gamma\left(t\right)dt \end{align}$$
This result can actually be generalized a bit by introducing the variable $a$.
$$\begin{align} &\frac{1}{n!}\int_{0}^{a}n\left(a-t\right)^{n-1}\ln\Gamma\left(t\right)dt-\frac{1}{n!}\int_{0}^{1}B_n\left(a+1-t\right)\ln\Gamma\left(t\right)dt \\=& \ \psi^{(-n-1)}\left(a\right)-\frac{1}{n!}\int_{0}^{1}B_n\left(a+1-t\right)\ln\Gamma\left(t\right)dt \end{align}$$
where $\psi^{(s)}(a)$ is the polygamma function. Here we are using this definition for negative order. Next we can utilize the definition of the bernoulli polynomials to obtain.
$$\begin{align} &\psi^{(-n-1)}\left(a\right)-\frac{1}{n!}\int_{0}^{1}\sum_{k=0}^{n}\binom{n}{k}B_k\left(a\right)\left(1-t\right)^{n-k}\ln\Gamma\left(t\right)dt \\=& \ \psi^{(-n-1)}\left(a\right)-\sum_{k=0}^{n}\frac{B_k\left(a\right)}{k!}\left(\frac{1}{\left(n-k\right)!}\int_{0}^{1}\left(1-t\right)^{n-k}\ln\Gamma\left(t\right)dt\right) \\=& \ \psi^{(-n-1)}\left(a\right)-\sum_{k=0}^{n}\frac{B_k\left(a\right)}{k!}\psi^{(-n-2+k)}\left(1\right) \end{align}$$
This last form is useful for plugging into Wolfram Alpha and generating our desired form. After analyzing patterns for several integers we see it equals
$$\begin{align} &-H_n\frac{B_{n+1}\left(a\right)}{\left(n+1\right)!}+\frac{\zeta'\left(-n\right)}{n!}+\frac{1}{n!}\sum_{k=1}^{a-1}k^{n}\ln k \\=& \ \frac{H_n\zeta\left(-n,a\right)}{n!}+\frac{\zeta'\left(-n,a\right)}{n!} \end{align}$$
Multiplying by $(n-1)!$ and setting $a=1$ yields the final result.
Update
This can be generalized as follows
$$\displaystyle\int_0^1{\zeta(1-n,1-t+x)\ln\Gamma{(t)}}dt = \frac{1}{n}\sum_{k=0}^n\binom{n}{k}\left(H_k\zeta(-k)+\zeta'(-k)\right)x^{n-k}$$