Let $\Omega \subset \mathbb{R}^3$ be a bounded region and consdier the Sobolev space $H^1(\Omega):=W^{1,2}(\Omega)$. For brevity, let us restrict to "real" Sobolev spaces.
By Sobolev embedding, we have $H^1(\Omega) \subset L^6(\Omega)$ so that $L^{6/5}(\Omega) \subset H^{-1}(\Omega)$.
Then, for any $f \in L^{6/5}(\Omega)$ and $g \in H^{1}(\Omega)$, is the following equality \begin{equation} \langle f,g\rangle_{H^{-1} \times H^1} =\int_{\Omega} fg \end{equation} just a definition? If not, how can one justify this equality?
Could anyone please clarify for me?