Based on the previous answer's sketch, I tried to fill in the details. I think this works. If anyone sees an error, please correct it.
Recall $H_p(D)\subseteq H_1(D),\ \forall \ 1\leq p\leq \infty.$
Fix $f \in H_{1}(D)$ and assume $f_{r} \in L_{1}$.
Now set
$$
\lambda_{r}(g) := \int f(re^{i\theta})g(e^{i\theta})\frac{d\theta}{2\pi}
$$
a linear functional on $L_1([0, 2\pi])$.
Next,
$|\lambda_{r} g| \leq \|g\|_{\infty} \|f_{r}\|_{1},$ and so $\|\lambda\|\leq \|f\|_1$.
This implies that $\lambda_{r} \in
\{\lambda \in L_{\infty}^*(C): \|\lambda\| \leq \|f\|_1 \} \subseteq L_{\infty}^{\ast}(C)$,
a closed neighborhood of the dual space of $L_{\infty}$.
The Banach-Alaoglu theorem implies that $\{ \|\lambda\| \leq \|f\|_1 \}$ is weak$^*$ compact, which furnishes a subsequence $r_n\nearrow 1$ and
$\lambda^* \in \{ \|\lambda\| \leq \|f\|_1 \}$ such that $\lambda_{r_n}(g) \to \lambda^*(g) \ \forall \ g\in L_\infty$.
Now from the Riesz representation theorem, $L_{\infty}^{\ast}$ is the set of bounded, finitely additive Borel measures on $L_{\infty}$
citation Dunford-Schwartz, Linear Operators I, Theorem IV.8.16, page 296.
So we have a bounded, finitely additive measure, $\mu$ such that
$$
\int f_{r_{k}}(e^{i\theta}) g(e^{i\theta})\tfrac{d\theta}{2\pi} = \lambda_{r_{k}}(g)\to \lambda(g) = \int g(e^{i\theta}) d\mu(\theta).
$$
Now from the Radon-Nikodym theorem, $d\mu(\theta) = f^{\ast}(e^{i\theta})\frac{d\theta}{2\pi} + d\mu^{\perp}$ where $d\mu^{\perp} \perp d\theta$ ($d\mu^\perp$'s support is Lebesgue measure 0 and conversely).
But then it must be the case that $d\mu^{\perp}$ is the zero measure. If this were not the case, then
$$ g =
\begin{cases}
|d\mu^{\perp}|(\theta) & \theta \in supp(d\mu^{\perp}), \\
0 & \text{elsewhere}
\end{cases}
\quad \in L_{\infty},
$$
as $g = 0$ a.e. $d\theta$.
Consequently,
$ 0 = \lambda(g) = 0 + |\mu^{\perp}([0, 2\pi])|^{2}$ and
$$
\lambda(g) = \int g d\mu = \int gf^{\ast} \tfrac{d\theta}{2\pi} = \lim_{r_{n} \rightarrow 1} \int gf_{r_{n}}\tfrac{d\theta}{2\pi}.
$$
This implies that
$$
\lim_{r_{n} \rightarrow 1} \left| \int g(f_{r_{n}} - f^{\ast}) d\mu \right| = 0.
$$
Fix $r_{0}e^{i\theta_{0}} \in D$ and we have
$$
f_{r_{0}}(e^{i\theta_{0}}) = \int f_{r}(e^{i\varphi}) P_{r_{0}}(\theta_{0} - \varphi) \frac{d\varphi}{2\pi}
$$
for any $r$ with $r_{0} < r < 1$.
In particular, for any
$r_k$ such that $\lim_{k \rightarrow \infty} r_k = 1$
\begin{equation}
\label{eqn:f*-poisson}
f_{r_{0}}(e^{i\theta_{0}}) = \lim_{k \rightarrow \infty} f_{r_{0}}(e^{i\theta_{0}}) = \lim_{k \rightarrow \infty} \int f_{r_{k}}(e^{i\varphi}) P_{r_{0}}(\theta_{0} - \varphi) \frac{d\varphi}{2\pi} = \int f^{\ast}(e^{i\varphi})P_{r_{0}}(\theta_{0} - \varphi)\frac{d\varphi}{d\pi}.
\end{equation}
Fix $\epsilon > 0$. Then Luzin's theorem implies that
there exists a compact subset $E_{\epsilon} \subseteq C$ such that $|E_{\epsilon}| > 2\pi - \epsilon$ and $f^{\ast}|_{E_{\epsilon}}$ is continuous.
Seeking the radial limit we let $r_0\to 1$ and observe
$$
\lim_{r_0\to 1} f_{r_{0}}(e^{i\theta_{0}}) = f^{\ast}(e^{i\theta_{0}}) \qquad \text{ for all } \theta \in E_{\epsilon},
$$
since $P_{r_{0}}$ is an approximation to the identity.
Since $\epsilon$ was determined arbitrarily,
$|\{\theta \in [0,2\pi] : \lim f_{r}(e^{i\theta}) \neq f(e^{i\theta}) \}| = 0.$
This shows the radial limits exist a.e., property (c) of the theorem follows from Eq. \ref{eqn:f*-poisson}.
To prove (a),
$$
\hat{f}^{\ast}(k) = \int f^{\ast}(e^{i\theta})e^{-ik\theta} d\mu = \lim_{n \rightarrow \infty} \int f_{r_n}(e^{i\theta})e^{ik\theta} = \hat{f}(k)\ .
$$
To verify (b), extend $f^*$ analytically to $D$ via
$$
f^{\ast}(z) = \int_{\omega \in C_{1}(0)} \frac{f^{\ast}(\omega)}{\omega - z}\frac{d\omega}{2\pi i}
$$
and note that
$$
f^{\ast}(z) = \lim_{n \rightarrow \infty} \int_{\omega \in C_{1}(0)} \frac{f_{r_{n}}(\omega)}{\omega - z}\frac{d\omega}{2\pi i} = \lim_{n \rightarrow \infty}{f_{r_n}(z)}.
$$
Even if $e^{i t} \in E_\epsilon$ to use continuity within the integral you need some neighbourhood of $e^{i t}$, where $f^*$ is continuous.
– JRazek May 31 '25 at 19:55