Given two symmetric integer unimodular matrices $A$ and $B$ with $\det A = \det B = \pm 1$. How do we find any integer unimodular matrices $T$ such that $$ T^\top A T = B? $$
Here $T^\top$, denotes the transpose of $T$. As an example, here are the data from the Mathematica Table:
A = ({{2, -1, 0, 0, 0, 0, 0, 0, 0, 0},
{-1, 2, -1, 0, 0, 0, 0, 0, 0, 0},
{0, -1, 2, -1, 0, 0, 0, -1, 0, 0},
{0, 0, -1, 2, -1, 0, 0, 0, 0, 0},
{0, 0, 0, -1, 2, -1, 0, 0, 0, 0},
{0, 0, 0, 0, -1, 2, -1, 0, 0, 0},
{0, 0, 0, 0, 0, -1, 2, 0, 0, 0},
{0, 0, -1, 0, 0, 0, 0, 2, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, -1} });
B = ({{1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 1, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, -1} });
In matrix form,
$$A= \left( \begin{array}{cccccccccc} 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ \end{array} \right) $$ $$ B=\left( \begin{array}{cccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ \end{array} \right) $$ such that $\det A=\det B=-1$ here. Can you solve integer matrix $T$ with $T^\top A T = B$?
AandBmust be positive definite matrices. I do not know why their algorithm works only with such matrices. – azerbajdzan Dec 11 '23 at 12:52PositiveDefiniteMatrixQthat gives False inMathematica. – azerbajdzan Dec 11 '23 at 18:35