After reading the reduction formula in the post, I am curious about the closed form of the integral $$ I_n=\int_0^1 \frac{x^n}{6+x-x^2} d x $$ I first resolve the integrand into two partial fractions as $$ I_n=\frac{1}{5} \left[\underbrace{\int_0^1 \frac{x^n}{3-x} d x}_{J_n} +\underbrace{\int_0^1 \frac{x^n}{2+x} d x}_{K_n} \right] $$ Then I tackle the two integrals in general, $$ \begin{aligned} \int_0^1 \frac{x^n}{a-x} d x & =\int_{a-1}^a \frac{(a-x)^n}{x} d x \\ \\ & =\int_{a-1}^a\left(\frac{a^n}{x}-\sum_{k=1}^n\left(\begin{array}{c} n \\ k \end{array}\right) a^{n-k} x^{k-1}\right) dx \\ & =a^n \ln \left(\frac{a}{a-1}\right)-\sum_{k=1}^n\left(\begin{array}{l} n \\ k \end{array}\right) \frac{a^{n}-a^{n-k}(a-1)^k}{k} \end{aligned} $$ Hence $$J_n =3^n \ln \left(\frac{3}{2}\right)-\sum_{k=1}^n\left(\begin{array}{l} n \\ k \end{array}\right) \frac{3^{n}-3^{n-k}2^k}{k} $$ and $$K_n= -\left[(-2)^n \ln \left(\frac{2}{3}\right)-\sum_{k=1}^n\left(\begin{array}{l} n \\ k \end{array}\right) \frac{(-2)^{n}-(-1)^n2^{n-k}3^k}{k} \right]$$ We can now conclude that the closed form of the integral is $$ \begin{aligned}I_n= &\ \frac{1}{5} \left[ 3^n\left[\ln \left(\frac{3}{2}\right)-\sum_{k=1}^n\left(\begin{array}{l} n \\ k \end{array}\right) \frac{1-\left(\frac{2}{3}\right)^k}{k}\right]+ (-2)^{n}\left[\ln \left(\frac{3}{2}\right)-\sum_{k=1}^n\left(\begin{array}{l} n \\ k \end{array}\right) \frac{1-\left(\frac{3}{2}\right)^k}{k}\right]\right]\\=& \frac{3^n+(-2)^n}{5} \ln \left(\frac{3}{2}\right) -\frac{1}{5}\left[\sum_{k=1}^n\left(\begin{array}{l} n \\ k \end{array}\right) \frac{1}{k}\left(3^n\left(1-\left(\frac{2}{3}\right)^k\right)+(-2)^n\left(1-\left(\frac{3}{2}\right)^k\right)\right]\right. \end{aligned} $$
My question:
Is there any alternative method? Your comments and alternative methods are highly appreciated.
$$\frac{3 , _2F_1\left(1,n+1;n+2;-\frac{1}{2}\right)+2 , _2F_1\left(1,n+1;n+2;\frac{1}{3}\right)}{30 (n+1)}$$
– userrandrand Dec 09 '23 at 05:00$$\begin{cases} \frac{1}{5} \left(\Phi \left(\frac{1}{3},1,n\right)-\Phi \left(-\frac{1}{2},1,n\right)\right) & n>2 \ \frac{1}{5} \log \left(\frac{3}{2}\right) & n=1 \ \frac{2}{5} \log \left(\frac{3}{2}\right) & n=0 \ \log \left(\frac{9}{4} \left(\frac{3}{2}\right)^{3/5}\right)-1 & n=2 \end{cases}$$
– userrandrand Dec 09 '23 at 05:22