1

How to solve the equation: $(2x)^{x}=14+x^{x}$ ? I am trying to solve this equation in this way:

$(2x)^{x}=14+x^{x}\implies 2^{x}x^{x}=14+x^{x}\implies x^{x}(2^{x}-1)=14\implies x^{x}=\frac{14}{2^{x}-1}\implies x\ln(x)=\ln(\frac{14}{2^{x}-1})\implies W(x\ln(x))=W(\ln(\frac{14}{2^{x}-1}))$.

Now here I am substituting $x=e^{t}$. Therefore, $W(te^{t})=W(\ln(\frac{14}{2^{x}-1}))\implies t=W(\ln(\frac{14}{2^{x}-1}))\implies \ln(x)=W(\ln(\frac{14}{2^{x}-1}))\implies x=e^{W(\ln(\frac{14}{2^{x}-1}))}$. But after this step I can't solve further. Desmos is giving the value of $x=2.059$. But how to get this value of $x$ by solving this above equation. Please help me out with this equation.

1 Answers1

1

My answer is for real solutions.

$$(2x)^x=14+x^x$$

We see, this equation is a polynomial equation of more than one algebraically independent monomials ($(2x)^x,x^x$) and with no univariate factor. We therefore don't know how to rearrange the equation for $x$ by applying only finite numbers of elementary functions (elementary operations) we can read from the equation.

But we can bring the equation into a form for applying Hyper Lambert W.

$$(2x)^x-x^x=14$$ $$2^xx^x-x^x=14$$ $$(2^x-1)x^x=14$$ $$(e^{\ln(2)x}-1)e^{\ln(x)x}=14$$ $x\to\frac{\ln(1+t)}{\ln(2)}$: $$t(1+t)^{\frac{\ln\left(\frac{\ln(1+t)}{\ln(2)}\right)}{\ln(2)}}=14$$ $$te^{\frac{\ln(1+t)\ln\left(\frac{\ln(1+t)}{\ln(2)}\right)}{\ln(2)}}=14$$

$$G\left(\left[\frac{\ln(1+t)\ln\left(\frac{\ln(1+t)}{\ln(2)}\right)}{\ln(2)}e^{-t}\right],t\right)=14$$ $$t=HW\left(\frac{\ln(1+t)\ln\left(\frac{\ln(1+t)}{\ln(2)}\right)}{\ln(2)}e^{-t},14\right)$$ $$x=\frac{\ln\left(1+HW\left(\frac{\ln(1+t)\ln\left(\frac{\ln(1+t)}{\ln(2)}\right)}{\ln(2)}e^{-t},14\right)\right)}{\ln(2)}$$

So we have a closed form for $x$, and the representations of Hyper Lambert W give some hints for calculating $x$.

Galidakis, I. N.: On solving the p-th complex auxiliary equation $f^{(p)}(z)=z$. Complex Variables 50 (2005) (13) 977-997

Galidakis, I. N.: On some applications of the generalized hyper-Lambert functions. Complex Variables and Elliptic Equations 52 (2007) (12) 1101-1119

IV_
  • 7,902