0

(a) $5$ $|$ $3^{3n+1}+2^{n+1}$
(b) $21$ $|$ $4^{n+1} + 5^{2n-1}$
(c) $24$ $|$ $2 \cdot7^n + 3 \cdot5^n - 5$

These are trivial by using induction. But I have tried to prove it by binomial theorem and remainder theorem, but couldn't succeed. Please help to prove it.

Lord_Farin
  • 17,924
  • 9
  • 52
  • 132
curious_mind
  • 1,473

2 Answers2

5

Hints with modular arithmetic:

$$(a)\;\;3^3=2\pmod 5\implies \left(3^{3}\right)^n\cdot 3=2^n\cdot 3\implies 3^{3n+1}+2^{n+1}=2^n(3+2)\pmod 5$$

$$(b)\;\;5^2=4\pmod {21}\implies 4^{n+1}+5^{2n-1}=4^n(4+5^{-1})\pmod{21}\;,\;$$

$$\text{but}\;5^{-1}=-4\pmod{21}\ldots$$

Now you try something similar as the above for the third one

Lord_Farin
  • 17,924
  • 9
  • 52
  • 132
DonAntonio
  • 214,715
1

(c)

Method $1:$ Observe that $7^2=49\equiv 1\pmod{24}$ and $5^2=25\equiv 1\pmod{24}$

So, when $n$ is even, $2(7^n)+3(5^n)\equiv2+3\pmod{24}\equiv5$

If $n$ is odd, $2(7^n)+3(5^n)\equiv2\cdot7+3\cdot5\pmod{24}\equiv29\equiv5$

Method $2:$

$\displaystyle2(7^n)+3(5^n)=2(1+6)^n+3(1+4)^n$

$\displaystyle=2\{1+6n+6^2(\text{ some integer })\}+3\{1+4n+4^2(\text{ some integer })\}$ (using Binomial Expansion of positive integer index)

$\displaystyle\equiv 2+12n+3+12n\pmod{24}\equiv5$

(b) $$4^{n+1}+5^{2n-1}=16(4^{n-1})+5(5^{2n-2})=16(4^{n-1})+5(25^{n-1})$$ $$\equiv16(4^{n-1})+5(4^{n-1})\pmod {21}\text{ as }25\equiv4\pmod {21}$$

$\implies 4^{n+1}+5^{2n-1}\equiv4^{n-1}(16+5)\pmod{21}$

(a) $3^{3n+1}+2^{n+1}=3(27^n)+2(2^n)\equiv 3(2^n)+2(2^n)\pmod 5\equiv 5(2^n)$