How can one look at the evolution of covariance matrix using Ito lemma for a non-linear stochastic differential equation? when the stochastic term is a Brownian motion? $$ d\mathbf{X(t)} = \boldsymbol{F(X,t)}\, dt + \mathbf{G(X,t)}\, d\mathbf{B} $$
$$ \frac{d}{dt}Cov(X, X) = ? $$ when $Cov(X, X) = \langle X^2 \rangle - \langle X \rangle^2$.