Let $A_{k}=\{0,1,\ldots,n\}\setminus\{k\}$ for each $k=0,1,\ldots ,n$.
I think that the following equality is true for all $n\in\mathbb{N}, n\geq 2$ : \begin{align} \sum_{k=0}^{n}\left[(-1)^{k+1}\prod_{\substack{i,j\in A_{k}\\i<j}}(a_{i}-a_{j})\right]=0. \end{align} But I cannot prove it so that I want the proof.
$\displaystyle\prod_{\substack{i,j\in A_{k}\\i<j}}(a_{i}-a_{j})\quad$is equal to, for example, \begin{align} &(a_{1}-a_{2})\quad&\mathrm{if}\quad n=2,k=0,\\ &(a_{1}-a_{2})(a_{1}-a_{3})(a_{2}-a_{3})\quad&\mathrm{if}\quad n=3,k=0,\\ &(a_{1}-a_{2})(a_{1}-a_{3})(a_{1}-a_{4})(a_{2}-a_{3})(a_{2}-a_{4})(a_{3}-a_{4})\quad&\mathrm{if}\quad n=4,k=0. \end{align} Thus, we get this product by multiplying ${}_{n}\mathrm{C}_{2}$ differences.
If $n=2$, \begin{align} \sum_{k=0}^{n}\left[(-1)^{k+1}\prod_{\substack{i,j\in A_{k}\\i<j}}(a_{i}-a_{j})\right]=-(a_{1}-a_{2})+(a_{0}-a_{2})-(a_{0}-a_{1})=0. \end{align} To show that the equality is true for all $n\in\mathbb{N}, n\geq 2,$
should I use mathematical induction, or is there another good method for proving it?