Let ${\rm SL}_2(\mathbb{Z}/8\mathbb{Z})$ be the special linear group over the finite ring $\mathbb{Z}/8\mathbb{Z}$. By How to calculate |SL2(Z/NZ)| , we know that the order of the group ${\rm SL}_2(\mathbb{Z}/8\mathbb{Z})$ is $384=2^7 \cdot 3$. By the Sylow theorem, there exists a matrix $A\in {\rm SL}_2(\mathbb{Z}/8\mathbb{Z}) $ of order $3$.
Is it true that the group ${\rm SL}_2(\mathbb{Z}/8\mathbb{Z})$ is generated by the set $\{B^{-1}AB~|~B\in {\rm SL}_2(\mathbb{Z}/8\mathbb{Z})\} $?