0

How to calculate $$\int\frac1{1+\sqrt{\tan x}}dx?$$ The integrand is$$\frac1{1+\sqrt{\frac{\sin x}{\cos x}}}=\frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}}$$ $$=\frac12\frac{(\sqrt{\cos x}+\sqrt{\sin x})+(\sqrt{\cos x}-\sqrt{\sin x})}{\sqrt{\cos x}+\sqrt{\sin x}}$$ $$=\frac12\left(1+\frac{\sqrt{\cos x}-\sqrt{\sin x}}{\sqrt{\cos x}+\sqrt{\sin x}}\right).$$

Now I am facing problem to calculate $$\int\frac{\sqrt{\cos x}-\sqrt{\sin x}}{\sqrt{\cos x}+\sqrt{\sin x}}dx.$$ Please help me out.

Anne Bauval
  • 49,005
george
  • 18

0 Answers0