
Plot of the integrand for $a=8$.
As the integrand is even, $I(a) = 2 \int_{0}^\infty \frac{\tanh{(y^2-a^2)}}{y^2-a^2} dy$
We can break the limits of integration into three intervals, $0 < y< a(1-\delta)$, $a(1-\delta) < y< a(1+\delta)$, and $a(1+\delta)<y<\infty$, where $\delta$ is chosen such that $\frac{1}{a} \ll \delta \ll 1$, so that $\tanh{(a \delta)} \approx 1$.
Then, the first part is, $I_1(a) = 2 \int_{0}^{a-a\delta} \frac{\tanh{(y^2-a^2)}}{y^2-a^2} dy \approx 2 \int_{0}^{a-a\delta} \frac{(-1)}{y^2-a^2} dy = \frac{1}{a} \log\frac{2-\delta}{\delta} \approx \frac{1}{a} \log\frac{2}{\delta}$.
The second part is, $I_2(a) = 2 \int_{a-a\delta}^{a+a\delta} \frac{\tanh{(y^2-a^2)}}{y^2-a^2} dy \approx 2 \int_{a-a\delta}^{a+a\delta} \frac{\tanh{(2a(y-a))}}{2a(y-a)} dy = \frac{1}{a} \int_{-2a^2 \delta}^{2a^2 \delta} \frac{\tanh{z}}{z} dz$.
Here I use the known result $\int_0^b \frac{\tanh x}{x} \approx C + \log b$, where $C = \gamma + \log(\frac{4}{\pi})$. Here $\gamma$ is the Euler's constant.
Then, $I_2(a) \approx \frac{2}{a} (C + \log(2 a^2 \delta))$.
The third part is, $I_3(a) = 2 \int_{a+a\delta}^{\infty} \frac{\tanh{(y^2-a^2)}}{y^2-a^2} dy \approx 2 \int_{a+a\delta}^{\infty} \frac{1}{y^2-a^2} dy = \frac{1}{a} \log\frac{2+\delta}{\delta} \approx \frac{1}{a} \log\frac{2}{\delta}$.
After adding everything, $\delta$ cancels, and we get,
$$I(a) = I_1 (a) + I_2(a) + I_3 (a) \approx \frac{2}{a} (C + 2 \log 2 + 2 \log a) = \frac{2\gamma + 2 \log(16/\pi) + 4 \log a}{a}.$$
The numerical value of $\boxed{c_1 = 2 \gamma + 2\log(16/\pi)}$ is approximately $4.41015$.