4

$$ \lim_{n\to\infty}\sqrt[n]{\int_0^1x^{\frac{n(n+1)}{2}}(1-x)(1-x^2)\cdots(1-x^n)dx} $$

$$ =\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{4i(i+1)} $$

$$ =\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{4}(\frac{1}{i}-\frac{1}{i+1}) $$

$$ =\lim_{n\to\infty}\frac{1}{4}(1-\frac{1}{n+1}) $$

$$ =\lim_{n\to\infty}\frac{1}{4}(\frac{n}{n+1}) $$

$$ =\frac{1}{4} $$

I found an answer, but I never understood where this first step came from.

Somos
  • 37,457
  • 3
  • 35
  • 85
Mike
  • 153

1 Answers1

6

Using AM $\ge$ GM

$$\sqrt{x^n(1-x^n)}\le\frac{x^n+(1-x^n)}2$$ $$x^n(1-x^n)\le \frac14$$

$$L=\lim_{n \to \infty } \sqrt[n]{\int_0 ^1 x^{\frac{n(n+1)}{2}}(1-x)(1-x^2)\cdots(1-x^n)d x}$$

$$L=\lim_{n \to \infty } \sqrt[n]{\int_0 ^1 x(1-x)x^2(1-x^2)\cdots x^n(1-x^n)d x}$$

$$L=\lim_{n \to \infty } \sqrt[n]{\int_0 ^1 \prod_{k=1}^nx^k(1-x^k)\,dx}\le\lim_{n\to\infty}\sqrt[n]{\int_0^1\left(\frac14\right)^ndx}=\boxed{\frac14}$$

Amrut Ayan
  • 8,887