$$ \lim_{n\to\infty}\sqrt[n]{\int_0^1x^{\frac{n(n+1)}{2}}(1-x)(1-x^2)\cdots(1-x^n)dx} $$
$$ =\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{4i(i+1)} $$
$$ =\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{4}(\frac{1}{i}-\frac{1}{i+1}) $$
$$ =\lim_{n\to\infty}\frac{1}{4}(1-\frac{1}{n+1}) $$
$$ =\lim_{n\to\infty}\frac{1}{4}(\frac{n}{n+1}) $$
$$ =\frac{1}{4} $$
I found an answer, but I never understood where this first step came from.