Can anyone explain the following equation?
$$\lim_{n \to \infty} \frac{ (n+1)^k}{(n+1)^{k+1}-n^{k+1}}=\frac{1}{k+1}$$
Can anyone explain the following equation?
$$\lim_{n \to \infty} \frac{ (n+1)^k}{(n+1)^{k+1}-n^{k+1}}=\frac{1}{k+1}$$
$$\frac{(n+1)^{k}}{(n+1)^{k+1}-n^{k+1}} = \frac{1}{n+1} \frac{1}{1-(1+1/n)^{-(k+1)}}$$
Taylor expand in the denominator in the RHS:
$$\frac{(n+1)^{k}}{(n+1)^{k+1}-n^{k+1}} \approx \frac{1}{n+1} \frac{1}{1-(1-(k+1)/n)}=\frac{n}{n+1} \frac{1}{k+1}$$
The result follows from taking the limit as $n\to\infty$.
Apply L'Hôpital's rule $k$ times to get $$\lim_{n \to \infty} \frac{ k!}{(k+1)!((n+1)-n)}=\frac{1}{k+1}$$
This is equivalent to one of @Ron's steps that $$a_mx^m+a_{m-1}x^{m-1}+\cdots+a_1x+a_0\sim a_mx^m$$ while $x\to\infty$. So $$\frac{(n+1)^{k}}{(n+1)^{k+1}-n^{k+1}} \sim \frac{n^k}{(k+1)n^k}= \frac{1}{k+1},~~n\to\infty$$