1

Can anyone explain the following equation?

$$\lim_{n \to \infty} \frac{ (n+1)^k}{(n+1)^{k+1}-n^{k+1}}=\frac{1}{k+1}$$

David
  • 313
  • 1
    Let $a=n+1$, $b=n$. Use $a^m-b^m=(a-b)(a^{m-1}+a^{m-2}{b}+\cdots+b^{m-1})$. – André Nicolas Aug 29 '13 at 08:03
  • Following @AndréNicolas' comment, $$\lim_{n\to\infty}\frac{(n+1)^m}{(n+1)^{m+1}-n^{m+1}}=\lim_{n\to\infty}\frac{(n+1)^m}{\sum_{k=0}^m(n+1)^kn^{m-k}}=\frac1{1+m}$$ – Matcha Latte Aug 13 '24 at 12:27

3 Answers3

5

$$\frac{(n+1)^{k}}{(n+1)^{k+1}-n^{k+1}} = \frac{1}{n+1} \frac{1}{1-(1+1/n)^{-(k+1)}}$$

Taylor expand in the denominator in the RHS:

$$\frac{(n+1)^{k}}{(n+1)^{k+1}-n^{k+1}} \approx \frac{1}{n+1} \frac{1}{1-(1-(k+1)/n)}=\frac{n}{n+1} \frac{1}{k+1}$$

The result follows from taking the limit as $n\to\infty$.

Ron Gordon
  • 141,538
5

Apply L'Hôpital's rule $k$ times to get $$\lim_{n \to \infty} \frac{ k!}{(k+1)!((n+1)-n)}=\frac{1}{k+1}$$

Džuris
  • 2,620
  • 21
  • 30
1

This is equivalent to one of @Ron's steps that $$a_mx^m+a_{m-1}x^{m-1}+\cdots+a_1x+a_0\sim a_mx^m$$ while $x\to\infty$. So $$\frac{(n+1)^{k}}{(n+1)^{k+1}-n^{k+1}} \sim \frac{n^k}{(k+1)n^k}= \frac{1}{k+1},~~n\to\infty$$

Mikasa
  • 67,942