Let $\Omega$ be an open connected convex subset of $\mathbb R^d$. Let $\mathcal P (\Omega)$ be the space of Borel probability measures on $\Omega$. Let $C_0 (\Omega)$ be the space of real-valued continuous functions on $\Omega$ that vanish at infinity. We endow $\mathcal P (\Omega)$ with the topology of weak$^*$ convergence, i.e., $\mu_n \to \mu$ if and only if $\int \varphi \, \mathrm d \mu_n \to \int \varphi \, \mathrm d \mu$ for every $\varphi \in C_0 (\Omega)$.
Let $\mu : [0, T] \to \mathcal P (\Omega), t \mapsto \mu_t$ be continuous. We fix a Borel vector field $v:[0, 1] \times \Omega \to \mathbb R^d$ such that $v_t := v(t, \cdot) \in L^1 (\Omega, \mu_t, \mathbb R^d)$ for all $t \in [0, 1]$. We consider the continuity equation $$ \partial_t \mu_t+\operatorname{div} (v_t \mu_t)=0.\label{a}\tag{$\ast$} $$
At page $123$ of Santambrogio's book Optimal Transport for Applied Mathematicians, the author defines the weak solution of \eqref{a} as $$ \begin{align*} \int_0^1 \int_\Omega \partial_t \phi_t ( x) \, \mathrm d \mu_t (x) \, \mathrm d t& + \int_0^1 \int_\Omega \nabla \phi_t (x) \cdot v_t (x) \, \mathrm d \mu_t (x) \, \mathrm d t = 0,\\ &\forall \phi \in C^\infty_c ((0, 1) \times \Omega), \end{align*} \label{1}\tag{1} $$ where $\phi_t := \phi (t, \cdot)$.
At page $185$ of Ambrosio's book Lectures on Optimal Transport, the author defines the weak solution of \eqref{a} as $$ \begin{align*} \frac{\mathrm d}{\mathrm d t} \int_\Omega \phi ( x) \, \mathrm d \mu_t (x) & + \int_\Omega \nabla \phi (x) \cdot v_t (x) \, \mathrm d \mu_t (x) = 0,\\ &\forall \phi \in C^\infty_c (\Omega). \end{align*}\label{2}\tag{2} $$
I would like to prove that the formulations (\ref{1}, \ref{2}) are equivalent. Could you please how to prove that (\ref{2}) implies (\ref{1})? Thank you so much for your help§!
- (\ref{1}) implies (\ref{2})
Fix $\phi \in C^\infty_c (\Omega)$ and $\varphi \in C^\infty_c ((0, 1))$. Then the map $\bar \phi :(t, x) \mapsto \varphi (t) \phi (x)$ belongs to $C^\infty_c ((0, 1) \times \Omega)$. By (\ref{1}) and integration by parts, $$ \begin{align*} \int_0^1 \int_\Omega \partial_t \bar \phi_t ( x) \, \mathrm d \mu_t (x) \, \mathrm d t& + \int_0^1 \int_\Omega \nabla \bar \phi_t (x) \cdot v_t (x) \, \mathrm d \mu_t (x) \, \mathrm d t &= 0\\ \implies \int_0^1 \varphi' (t) \int_\Omega \phi ( x) \, \mathrm d \mu_t (x) \, \mathrm d t& + \int_0^1 \varphi (t) \int_\Omega \nabla \phi (x) \cdot v_t (x) \, \mathrm d \mu_t (x) \, \mathrm d t &= 0\\ \implies \int_0^1 \varphi (t) \frac{\mathrm d}{\mathrm d t} \left ( \int_\Omega \phi ( x) \, \mathrm d \mu_t (x) \right ) \mathrm d t& + \int_0^1 \varphi (t) \left ( \int_\Omega \nabla \phi (x) \cdot v_t (x) \, \mathrm d \mu_t (x) \right ) \mathrm d t &= 0. \end{align*} $$
Because $\varphi \in C^\infty_c ((0, 1))$ is arbitrary, we get $$ \frac{\mathrm d}{\mathrm d t} \left ( \int_\Omega \phi ( x) \, \mathrm d \mu_t (x) \right ) + \int_\Omega \nabla \phi (x) \cdot v_t (x) \, \mathrm d \mu_t (x) = 0 $$ for a.e. $t \in (0, 1)$.