I am getting trouble while integrating $$ \int_0^\pi \! \frac{1}{1 + \sin x} \, \mathrm{d}x $$ by substituting $u$ as $\sin x$.
-
I am not understanting why – sri taran .28 Oct 11 '23 at 19:07
-
What doubt do you have? – Deif Oct 11 '23 at 19:08
-
Perhaps you may check for some other approaches in this post: https://math.stackexchange.com/questions/1576711/integration-of-frac-11-sin-x – Anton Vrdoljak Oct 11 '23 at 20:05
-
One typical way to handle such integration is taking $1=\cos^2(x/2)+\sin^2(x/2)$ and $\sin x=2\cos (x/2)\sin(x/2)$, then you get a rational function on $\tan(x/2)$ with $\sec^2(x/2)$. From then you can substitute $\tan(x/2)$. – Hanul Jeon Oct 11 '23 at 23:26
4 Answers
Hint: \begin{align} \frac{1}{1 + \sin x} &= \frac{1 - \sin x}{(1 + \sin x)(1 - \sin x)} \\[2pt] &= \frac{1 - \sin x}{1 - \sin^2 x} \\[2pt] &= \frac{1 - \sin x}{\cos^2 x} \\[2pt] &= \frac{1}{\cos^2 x} - \frac{\sin x}{\cos^2 x} \\[2pt] &= \sec^2 x - \sec x \tan x \end{align}
- 28,409
I would recommend you to notice that
\begin{align*} \int_{0}^{\pi}\frac{1}{1 + \sin(x)}\mathrm{d}x & = \int_{0}^{\pi}\frac{1}{1 + 2\sin(x/2)\cos(x/2)}\mathrm{d}x\\\\ & = \int_{0}^{\pi}\frac{1}{(\cos(x/2) + \sin(x/2))^{2}}\mathrm{d}x\\\\ & = \int_{0}^{\pi}\frac{1}{\cos^{2}(x/2)(1 + \tan(x/2))^{2}}\mathrm{d}x\\\\ & = \int_{0}^{\pi}\frac{\sec^{2}(x/2)}{(1 + \tan(x/2))^{2}}\mathrm{d}x\\\\ & = 2\int_{0}^{\infty}\frac{1}{(1 + u)^{2}}\mathrm{d}u = 2 \end{align*}
- 18,937
Exploit $\displaystyle \frac1{1-x}=\sum_{n=0}^\infty x^n$ (when $|x|<1$) to rewrite the integral in terms of the beta function, then utilize the power series derived in this answer:
$$\begin{align*} \int_0^\pi \frac{dx}{1+\sin x} &= \sum_{n=0}^\infty (-1)^n \int_0^\pi \sin^n x \, dx \\ &= \Gamma\left(\frac12\right) \sum_{n=0}^\infty (-1)^n \frac{\Gamma\left(\frac n2+\frac12\right)}{\Gamma\left(\frac n2+1\right)} \\ &= \sqrt\pi \sum_{n=0}^\infty \left(\frac{\Gamma\left(n+\frac12\right)}{\Gamma(n+1)} - \frac{\Gamma(n+1)}{\Gamma\left(n+\frac32\right)}\right) \\ &= 2 \lim_{x\to1^-} \frac{\frac\pi2 - \arcsin x}{\sqrt{1-x^2}} \end{align*}$$
- 25,320
Let $I$ denote the integral, and observe that, by symmetry,
$$I=2\int_0^{\frac{\pi}{2}}\frac{\mathrm{d}x}{1+\sin x}.$$
Furthermore, if $u=\frac{x}{2}+\frac{\pi}{4}$, then
\begin{align*} \frac{1}{1+\sin x} &=\frac{1}{1+\sin\left(2u-\frac{\pi}{2}\right)} \\ &=\frac{1}{1-\cos2u} \\ &=\frac{1}{2\sin^2u} \\ &=\frac{1}{2}\frac{\sin^2 u+\cos^2u}{\sin^2u} \\ &=\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}u}\left(\frac{-\cos u}{\sin u}\right) \\ &=-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}u}\left(\frac{1}{\tan u}\right) \end{align*}
by recognizing the quotient rule, so
$$I=-2\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{\mathrm{d}}{\mathrm{d}u}\left(\frac{1}{\tan u}\right)~\mathrm{d}u=\frac{2}{\tan\frac{\pi}{4}}-\lim_{u\uparrow\frac{\pi}{2}}\frac{2}{\tan u}=2$$
by the FTC.
- 12,173