Let $(a_n),(x_n)$ and $(y_n)$ be sequences of real numbers with $x_n,y_n\ge0$, $mx_n\le y_n\le M x_n$ for some $m,M>0$, $|x_n a_n|\le1$, $x_n\to0$ and $\lim\limits_{N\to\infty}\frac{1}{N}\sum\limits_{n=1}^N x_na_n$ exists. Prove that, $\lim\limits_{N\to\infty}\frac{1}{N}\sum\limits_{n=1}^N y_n a_n$ exists.
Let $L:=\lim\limits_{N\to\infty}\frac{1}{N}\sum\limits_{n=1}^N x_na_n$ and $S_N=\frac{1}{N}\sum\limits_{n=1}^N y_n a_n$. If I assume $a_n\ge0$. Then observe that $$m\lim\limits_{N\to\infty}\frac{1}{N}\sum\limits_{n=1}^N x_na_n\le\lim\limits_{N\to\infty}\frac{1}{N}\sum\limits_{n=1}^N y_n a_n\le M\lim\limits_{N\to\infty}\frac{1}{N}\sum\limits_{n=1}^N x_na_n$$
This implies $$mL\le\liminf S_N\le\limsup S_N\le ML$$ I tried to prove $S_N$ to be cauchy, but not getting anything.
Can anyone help me with some idea or hint regarding the problem? Thanks for your help in advance.