Let $(M,\{-,-\})$ be a Poisson manifold.
An Hamiltonian isotopy is a smooth family of diffeomorphisms $\{\varphi^t:M\to M\}_{t\in [0,1]}$ such that $\varphi^0=\text{id}_M$ there exists a smooth family of functions $\{h_t:M\to \mathbb{R}\}_{t\in [0,1]}$ such that $$\frac{d\varphi^t(x)}{dt}=X_{h_t}|_{\varphi^t(x)}$$ where $X_{h_t}$ is the Hamilton vector field induced by $h_t$ (i.e. $X_{h_t}(g):=\{h_t,g\}$ for any $g\in C^\infty(M)$).
A diffeomorphism $\varphi:M\to M$ is a Hamiltonian diffeomorphism iff there exists an Hamiltonian isotopy $\{\varphi^t\}$ such that $\varphi^1=\varphi$.
I want to prove that an Hamiltonian diffeomorphism is also a Poisson diffeomorphism i.e.
$$\{f\circ \varphi,g\circ \varphi\}=\{f,g\}\circ \varphi$$
for any $f,g\in C^\infty(M)$.
My attempt
Let's prove that
$$\{f\circ \varphi^t,g\circ \varphi^t\}-\{f,g\}\circ \varphi^t=0$$
for any $t$. This trivially holds for $t=0$, so I just need to prove that the derivative of the expression above (with respect to $t$) is $0$:
$$\frac{d}{dt}|_{t=t_0}\{f\circ \varphi^t,g\circ \varphi^t\}-\{f,g\}\circ \varphi^t=$$ $$=\left\{f_\ast\left(\frac{d}{dt}|_{t=t_0}\varphi^t\right),g\circ \varphi^{t_0}\right\}+\left\{f\circ \varphi^{t_0},g_\ast\left(\frac{d}{dt}|_{t=t_0}\varphi^t\right)\right\}-\{f,g\}_\ast \left(\frac{d}{dt}|_{t=t_0}\varphi^t\right)=$$ $$=\left\{f_\ast\left(X_{h_{t_0}}|_{\varphi^{t_0}(\cdot)}\right),g\circ \varphi^{t_0}\right\}+\left\{f\circ \varphi^{t_0},g_\ast\left(X_{h_{t_0}}|_{\varphi^{t_0}(\cdot)}\right)\right\}-\{f,g\}_\ast \left(X_{h_{t_0}}|_{\varphi^{t_0}(\cdot)}\right)=$$ $$=\{\{h_{t_0},f\}\circ \varphi^{t_0},g\circ \varphi^{t_0}\}+\{f\circ \varphi^{t_0},\{h_{t_0},g\}\circ \varphi^{t_0}\}-\{h_{t_0},\{f,g\}\}\circ \varphi^{t_0}$$ And now I feel stuck.