1

I wanted to study the following problem:

Let

$$x!_{(a)}=a^{\frac{x}{a}}\Gamma\left(1+\frac{x}{a}\right)\prod_{j=1}^{a-1}\left(\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}\right)^{C_{a}\left(x-j\right)}$$

where

$$C_{a}(x)=\frac{1}{a}\left(1+2\sum_{k=1}^{\left\lfloor\frac{a-1}{2}\right\rfloor}\cos\left(\frac{2k\pi}{a}x\right)+\operatorname{mod}\left(a-1,2\right)\cos\left(\pi x\right)\right)$$

The analitic continuation of the multifactorial.

An alternative representation of $C_a(x)$ is: $$C_a(x)=\frac{1}{a}\sum_{k=1}^{a}\cos\left(\theta_k x\right)\qquad \text{where }\theta_k=\arccos\left(\cos\left(\frac{2k\pi}{a}\right)\right)\neq \frac{2k\pi}{a}\text{ for }k\in[1,...,a]$$

And let

$$x?_{(a)}=a^{\frac{x}{a}}\Gamma\left(1+\frac{x}{a}\right)\sum_{j=1}^{a}\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}C_{a}(x-j)$$

The Fourier expansion of $x!_{(a)}$


I want to calculate the maximum relative error of $x?_{(a)}$ compared to $x!_{(a)}$

$\text{rel.err.}(x)=\left|\dfrac{x?_{(a)}-x!_{(a)}}{x!_{(a)}}\right|$

To calculate the maximum therefore I have to take the derivative and set it equal to $0$ (to simplify the calculations I remove the absolute value)

$\dfrac{\mathrm{d}}{\mathrm{d}x}\dfrac{x?_{(a)}-x!_{(a)}}{x!_{(a)}}=\dfrac{\mathrm{d}}{\mathrm{d}x}\dfrac{x?_{(a)}}{x!_{(a)}}$
$\dfrac{\mathrm{d}}{\mathrm{d}x}\dfrac{x?_{(a)}-x!_{(a)}}{x!_{(a)}}=\dfrac{\mathrm{d}}{\mathrm{d}x}\dfrac{\displaystyle a^{\frac{x}{a}}\Gamma\left(1+\frac{x}{a}\right)\sum_{j=1}^{a}\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}C_a\left(x-j\right)}{\displaystyle a^{\frac{x}{a}}\Gamma\left(1+\frac{x}{a}\right)\prod_{j=1}^{a-1}\left(\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}\right)^{C_{a}\left(x-j\right)}}$
$\dfrac{\mathrm{d}}{\mathrm{d}x}\dfrac{x?_{(a)}-x!_{(a)}}{x!_{(a)}}=\dfrac{\mathrm{d}}{\mathrm{d}x}\dfrac{\displaystyle \sum_{j=1}^{a}\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}C_a\left(x-j\right)}{\displaystyle \prod_{j=1}^{a-1}\left(\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}\right)^{C_{a}\left(x-j\right)}}$

$$\color{blue}{\dfrac{\mathrm{d}}{\mathrm{d}x}\dfrac{\displaystyle \sum_{j=1}^{a}\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}C_a\left(x-j\right)}{\displaystyle \prod_{j=1}^{a-1}\left(\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}\right)^{C_{a}\left(x-j\right)}}=0}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\frac{f(x)}{g(x)}=0\;\Leftrightarrow\; f'(x)g(x)=f(x)g'(x)$$ $$\frac{\mathrm{d}}{\mathrm{d}x}\prod_{i=1}^{n}a_i^{f_i(x)}=\left(\prod_{i=1}^{n}a_i^{f_i(x)}\right)\left(\sum_{i=1}^{n}\ln(a_i)f_i'(x)\right)$$ ${\displaystyle\left[\sum_{j=1}^{a}\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}C_{a}'\left(x-j\right)\right]\cdot\left[ \prod_{j=1}^{a-1}\left(\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}\right)^{C_{a}\left(x-j\right)}\right]=\left[\sum_{j=1}^{a}\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}C_{a}'\left(x-j\right)\right]\cdot \left[ \prod_{j=1}^{a-1}\left(\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}\right)^{C_{a}\left(x-j\right)}\right]\cdot \left[ \sum_{j=1}^{a-1}\ln\left(\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}\right) C'_{a}\left(x-j\right)\right]}$

$$\color{blue}{{\sum_{j=1}^{a}\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}C_{a}'\left(x-j\right)=\left[\sum_{j=1}^{a}\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}C_{a}\left(x-j\right)\right]\cdot \left[ \sum_{j=1}^{a-1}\ln\left(\frac{a^{\frac{a-j}{a}}}{\Gamma\left(\frac{j}{a}\right)}\right) C'_{a}\left(x-j\right)\right]}}$$

This equation is a goniometric equation, in fact it depends only on $C_a(x)$ (which is the sum of goniometric functions) and its derivative. But I got stuck at this step.


I think this problem is very interesting for 3 reasons:

  1. The Fourier expansion of the multifactorial is a finite sum and not a series, therefore the maximum of the relative error it is a fixed value, once $a$ is chosen.
  2. The equation to find the maximum relative error is a goniometric equation, therefore it follows a periodic trend and remains limited as $x$ increases.
  3. By representing the trend of the maximum relative error, we see that in addition to being very small, it has a less than logarithmic trend.

So I would like to see what happens as $a$ increases (if it grows unlimitedly or converges to some value)

Here is a table of the values ​​I found:

$$\begin{array}{|c|c|}\hline a&\text{max. rel. err.}\\\hline 1&=0.000\%\\ 2&\approx 0.639\%\\ 3&\approx 1.530\%\\ 4&\approx 1.814\%\\ 5&\approx 2.056\%\\ 6&\approx 2.225\%\\ 7&\approx 2.350\%\\ 8&\approx 2.465\%\\ 9&\approx 2.546\%\\ 10&\approx 2.630\%\\ 11&\approx 2.688\%\\ 12&\approx 2.752\%\\ 13&\approx 2.796\%\\ 14&\approx 2.848\%\\ 15&\approx 2.883\%\\ 16&\approx 2.925\%\\ 17&\approx 2.954\%\\ 18&\approx 2.989\%\\ 19&\approx 3.013\%\\ 20&\approx 3.043\%\\ ...&...\\ 100&\approx 3.562\%\\ 200&\approx 3.663\%\\ 500&\approx 3.736\%\\ 1000&\approx 3.766\%\\\hline \end{array}$$

Here the graphic representation


Edit

I think it's useful that: $$\lim_{a\to\infty}C_a(x)=\frac{\sin(\pi x)}{\pi x}$$

Math Attack
  • 5,343

1 Answers1

0

I just solved it by myself.

It seems that the error does not diverge, but converges. Indeed \begin{align*} \lim_{a\to\infty}x?_{(a)}=&x?_{(\infty)}\\ =&1+\frac{\sin\left(\pi x\right)}{\pi}\left(\frac{1}{2}+\frac{x-1}{2}\left(\psi\left(1-\frac{x}{2}\right)-\psi\left(\frac{1-x}{2}\right)\right)\right) \end{align*} Where $\psi(z)$ is the digamma function.

An integral representation of $x?_{(\infty)}$ is

$$x?_{(\infty)}=\frac{x+1}{2}+\frac{\sin\left(\pi x\right)}{2\pi}+\frac{x-1}{\pi}\int_{0}^{\frac{\pi}{2}}\frac{\sin\left(\left(2x-1\right)t\right)}{\sin\left(t\right)}dt$$


Evaluating the maximum relative error $$\text{rel.err.}(x)=\frac{x?_{(\infty)}-x!_{(\infty)}}{x!_{(\infty)}}$$ I found that the $$\underset{x\in\mathbb{R}}{\operatorname{arg max}}[\text{rel.err.}(x)]\approx 1.490576048$$ and $$\eta=\max_{x\in\mathbb{R}}[\text{rel.err.}(x)]\approx 0.038029388713$$ So, asymptotically the maximum relative error is $$\color{red}{\eta\approx 3.802938871\%}$$ Here some other values $$\begin{array}{|c c| c c| c c|}\hline \alpha & \eta & \alpha & \eta & \alpha & \eta \\ \hline 1 & =0,000\% & 11 & \approx 2,688\% & 21 & \approx 3,063\% \\ 2 & \approx 0,639\% & 12 & \approx 2,752\% & 22 & \approx 3,089\% \\ 3 & \approx 1,530\% & 13 & \approx 2,796\% & 23 & \approx 3,107\% \\ 4 & \approx 1,814\% & 14 & \approx 2,848\% & 24 & \approx 3,129\% \\ 5 & \approx 2,056\% & 15 & \approx 2,883\% & 25 & \approx 3,149\% \\ 6 & \approx 2,225\% & 16 & \approx 2,925\% & 26 & \approx 3,165\% \\ 7 & \approx 2,360\% & 17 & \approx 2,954\% & 27 & \approx 3,178\% \\ 8 & \approx 2,465\% & 18 & \approx 2,989\% & 28 & \approx 3,195\% \\ 9 & \approx 2,546\% & 19 & \approx 3,013\% & 29 & \approx 3,208\% \\ 10 & \approx 2,562\% & 20 & \approx 3,043\% & 30 & \approx 3,223\% \\\hline 100 & \approx 3,562\% & 1000 & \approx 3,766\% &&\\ 200 & \approx 3,662\% & 2000 & \approx 3,782\% &&\\ 300 & \approx 3,701\% & 3000 & \approx 3,788\% &&\\ 400 & \approx 3,722\% & 4000 & \approx 3,791\% &&\\ 500 & \approx 3,736\% & 5000 & \approx 3,793\% &&\\ 600 & \approx 3,754\% & 6000 & \approx 3,795\% &&\\ 700 & \approx 3,752\% & 7000 & \approx 3,796\%&& \\ 800 & \approx 3,757\% &&&&\\ 900 & \approx 3,762\% &\infty&\approx 3.803\%&&\\\hline \end{array}$$

Math Attack
  • 5,343