-1

How do I prove that $\gcd(a,b)=\gcd(-a,b)$?


Here is what I have tried: Let $d=\gcd(a,b)$ and $d'=\gcd(-a,b)$

Then $d|a$, $d|b$, $d'|(-a)$, $d'|b$ $\implies d'|(b-a)$ and $d|(a+b)$. Then there is some $k,t\in\mathbb{Z}$ such that $b-a=kd'$ and $a+b=td$, but am now unsure what to do, and am not sure whether or not I am overcomplicating potentially trivial proof.

Jason Xu
  • 653

1 Answers1

1

$d' | -a \implies d'| a\;$ and $\;d'|b$ . Therefore, $d'|d$.

similarly, $d|a \implies d|-a\;$ and $\; d|b\;$ therefore, $d|d'$

$\implies d=d'$

Arfin
  • 1,460