How do I prove that $\gcd(a,b)=\gcd(-a,b)$?
Here is what I have tried: Let $d=\gcd(a,b)$ and $d'=\gcd(-a,b)$
Then $d|a$, $d|b$, $d'|(-a)$, $d'|b$ $\implies d'|(b-a)$ and $d|(a+b)$. Then there is some $k,t\in\mathbb{Z}$ such that $b-a=kd'$ and $a+b=td$, but am now unsure what to do, and am not sure whether or not I am overcomplicating potentially trivial proof.