$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{{\displaystyle #1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iverson}[1]{\left[\left[\,{#1}\,\right]\right]}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\sr}[2]{\,\,\,\stackrel{{#1}}{{#2}}\,\,\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\color{#44f}{\LARGE\tt I} & \equiv\color{#44f}{\int_{0}^{\infty}{\ln\left(x\right)
\bracks{\expo{-x} - \cos\pars{x}} \over x}\dd x}
\\[5mm] & =
\lim_{\epsilon\ \to\ 0^{+}}\,\,
\partiald{}{\epsilon}\int_{0}^{\infty}
x^{\epsilon - 1}\bracks{\expo{-x} - \cos\pars{x}}\dd x
\\[5mm] & =
\lim_{\epsilon\ \to\ 0^{+}}\,\,
\partiald{}{\epsilon}\bracks{\int_{0}^{\infty}
x^{\epsilon - 1}\expo{-x}\dd x - {1 \over 2}\int_{0}^{\infty}
x^{\epsilon/2 - 1}\cos\pars{\root{x}}\dd x}
\end{align}
Note that
$
\ds{\color{red}{\cos\pars{\root{x}}} =
\sum_{n = 0}^{\infty}\color{red}{\Gamma\pars{1 + n} \over \Gamma\pars{1 + 2n}}\,{\pars{-x}^{n} \over n!}}
$. With the $\ds{Ramanujan's\ Master\ Theorem}$:
\begin{align}
\color{#44f}{\LARGE\tt I} & \equiv\color{#44f}{\int_{0}^{\infty}{\ln\left(x\right)
\bracks{\expo{-x} - \cos\pars{x}} \over x}\dd x}
\\[5mm] & =
\lim_{\epsilon\ \to\ 0^{+}}\,\,
\partiald{}{\epsilon}\bracks{\Gamma\pars{\epsilon}\color{red}{1} -
{1 \over 2}\Gamma\pars{\epsilon \over 2}\color{red}{\Gamma\pars{1 - \epsilon/2} \over \Gamma\pars{1 - \epsilon}}}
\\[5mm] & =
\lim_{\epsilon\ \to\ 0^{+}}\,\,
\partiald{}{\epsilon}\bracks{\Gamma\pars{\epsilon} -
{1 \over 2}{\pi \over \sin\pars{\pi\epsilon/2}}{\Gamma\pars{\epsilon} \over \pi/\sin\pars{\pi\epsilon}}}
\\[5mm] & =
\lim_{\epsilon\ \to\ 0^{+}}\,\,
\partiald{}{\epsilon}\braces{\Gamma\pars{\epsilon}\bracks{1 -
\cos\pars{\pi\epsilon \over 2}}}
\\[5mm] & =
2\lim_{\epsilon\ \to\ 0^{+}}\,\,
\partiald{}{\epsilon}\bracks{\Gamma\pars{\epsilon}
\sin^{2}\pars{\pi\epsilon \over 4}}
\\[5mm] & =
2\lim_{\epsilon\ \to\ 0^{+}}\,\,
\partiald{}{\epsilon}\pars{{1 \over \epsilon}
{\pi^{2}\epsilon^{2} \over 16}} = \bbx{\color{#44f}{\pi^{2} \over 8}} \approx 1.2337 \\ &
\end{align}