Let's ask a more general question: Let $g$ be analytic at $0$ and $\forall n \in \{ m \in \mathbb{N}_{0} \mid m < \lceil \alpha \rceil \}{:}\, g^{( n )}( 0 ) = 0$. What is the inverse of this Caputo fractional derivative of $g$ such that ${_{0}^{\text{C}}\operatorname{D}}_{u}^{\alpha}\left[ f( u ) \right]( x ) = g( x )$ (in the ROC of it's series)?
An answer is $\fbox{$f( x ) = \sum_{k = \lceil \alpha \rceil}^{\infty}\left( g_{k} \cdot \frac{\Gamma( k + 1 )}{\Gamma( k + \alpha + 1 )} \cdot x^{k + \alpha} \right) + P( x )$ with $\deg( P ) < \lceil \alpha \rceil$}$ (I included a proof at the end). You can generalize this to all analytic functions but the term get's way more complicated and we would have much more work.
What does this mean to you? We have $$g( x ) := x \cdot \exp( x ) = x \cdot \sum_{k = 0}^{\infty}\left( \tfrac{1}{k!} \cdot x^{k} \right) = \sum_{k = 0}^{\infty}\left( \tfrac{1}{k!} \cdot x^{k + 1} \right)$$ aka $g( 0 ) = 0$. So for $0 < \alpha < 1$ aka $\lceil \alpha \rceil = 1$ we have
\begin{align*}
f( x ) &= \sum\limits_{k = 1}^{\infty}\left( \frac{\Gamma( k + 1 )}{k! \cdot \Gamma( k + \alpha + 1 )} \cdot x^{k + \alpha} \right) + \text{constant}\\
&= \sum\limits_{k = 1}^{\infty}\left( \frac{1}{\Gamma( k + \alpha + 1 )} \cdot x^{k + \alpha} \right) + \text{constant}\\
&= \sum\limits_{k = 0}^{\infty}\left( \frac{1}{\Gamma( k + \alpha + 2 )} \cdot x^{k + \alpha + 1} \right) + \text{constant}\\
&= x^{\alpha + 1} \cdot \sum\limits_{k = 0}^{\infty}\left( \frac{1}{\Gamma( k + \alpha + 2 )} \cdot x^{k} \right) + \text{constant}.
\end{align*}
We can simplify this via incomplete Gamma functions or the general Mittag-Leffler function, to:
$${\huge \fbox{$\fbox{$f( x ) = x^{\alpha + 1} \cdot \operatorname{E}_{1,\, \alpha + 2}( x ) + \text{constant}$}$}}$$
Proof.
We know ${_{0}^{\text{C}}\operatorname{D}}_{u}^{\alpha}\left[ u^{\beta} \right]( x ) = \begin{cases} 0, &\text{for } \lceil \alpha \rceil > \beta \in \mathbb{N}_{0}\\ \frac{\Gamma( \beta + 1 )}{\Gamma( \beta - \alpha + 1 )} \cdot u^{\beta - \alpha}, &\text{for } \lceil \alpha \rceil < \beta \end{cases}$, so:
\begin{align*}
f( x ) &= \sum\limits_{k = \lceil \alpha \rceil}^{\infty}\left( g_{k} \cdot \frac{\Gamma( k + 1 )}{\Gamma( k + \alpha + 1 )} \cdot x^{k + \alpha} \right) + P( x )\\
\implies {_{0}^{\text{C}}\operatorname{D}}_{u}^{\alpha}\left[ f( u ) \right]( x ) &= {_{0}^{\text{C}}\operatorname{D}}_{u}^{\alpha}\left[ \sum\limits_{k = \lceil \alpha \rceil}^{\infty}\left( g_{k} \cdot \frac{\Gamma( k + 1 )}{\Gamma( k + \alpha + 1 )} \cdot u^{k + \alpha} \right) + P( u ) \right]( x )\\
&= {_{0}^{\text{C}}\operatorname{D}}_{u}^{\alpha}\left[ \sum\limits_{k = \lceil \alpha \rceil}^{\infty}\left( g_{k} \cdot \frac{\Gamma( k + 1 )}{\Gamma( k + \alpha + 1 )} \cdot u^{k + \alpha} \right) \right]( x ) + {_{0}^{\text{C}}\operatorname{D}}_{u}^{\alpha}\left[ P( u ) \right]( x )\\
&= {_{0}^{\text{C}}\operatorname{D}}_{u}^{\alpha}\left[ \sum\limits_{k = \lceil \alpha \rceil}^{\infty}\left( g_{k} \cdot \frac{\Gamma( k + 1 )}{\Gamma( k + \alpha + 1 )} \cdot u^{k + \alpha} \right) \right]( x )\\
&= \sum\limits_{k = \lceil \alpha \rceil}^{\infty}\left( g_{k} \cdot \frac{\Gamma( k + 1 )}{\Gamma( k + \alpha + 1 )} \cdot {_{0}^{\text{C}}\operatorname{D}}_{u}^{\alpha}\left[ u^{k + \alpha} \right]( x ) \right)\\
&= \sum\limits_{k = \lceil \alpha \rceil}^{\infty}\left( g_{k} \cdot \frac{\Gamma( k + 1 )}{\Gamma( k + \alpha + 1 )} \cdot \frac{\Gamma( k + \alpha + 1 )}{\Gamma( k + 1 )} \cdot x^{k} \right)\\
&= \sum\limits_{k = \lceil \alpha \rceil}^{\infty}\left( g_{k} \cdot x^{k} \right)
\end{align*}
And $g \text{ is analytic at } 0 \implies \exists ( g_{n} )_{n \in \mathbb{N}_{0}}{:}\, g( x ) = \sum_{k = 0}^{\infty}\left( g_{k} \cdot x^{k} \right)$ and $$\left( \forall n \in \{ m \in \mathbb{N}_{0} \mid m < \lceil \alpha \rceil \}{:}\, g^{( n )}( 0 ) = 0 \right)\\ \implies \left( \forall n \in \{ m \in \mathbb{N}_{0} \mid m < \lceil \alpha \rceil \}{:}\, \sum_{k = n}^{\infty}\left( g_{k} \cdot \frac{k!}{( k - n )!} \cdot 0^{k - n} \right) = 0 \right)\\ \implies \left( \forall n \in \{ m \in \mathbb{N}_{0} \mid m < \lceil \alpha \rceil \}{:}\, g_{n} = 0 \right),$$
so $g( x ) = \sum_{k = \lceil \alpha \rceil}^{\infty}\left( g_{k} \cdot x^{k} \right)$. Combining gives us $${_{0}^{\text{C}}\operatorname{D}}_{u}^{\alpha}\left[ f( u ) \right] = \sum_{k = \lceil \alpha \rceil}^{\infty}\left( g_{k} \cdot x^{k} \right) = g( x ). \qquad \text{q.e.d.}$$