If $x,y,z\ge 0: (x^2+y^2)(y^2+z^2)(z^2+x^2)=2.$ Find the maximum $$P=xy^2+yz^2+zx^2+xyz$$
I guess equality occurs when $x=y=z$ so I tried to prove homogenizing inequality $$xy^2+yz^2+zx^2+xyz \le \sqrt{2(x^2+y^2)(y^2+z^2)(z^2+x^2)}$$ Now, by well-known result $xy^2+yz^2+zx^2+xyz \le\dfrac{4}{27}(x+y+z)^3,$ we just need to prove $$\dfrac{4}{27}(x+y+z)^3\le \sqrt{2(x^2+y^2)(y^2+z^2)(z^2+x^2)} $$ It is equivalent to $$\dfrac{8}{729}(x+y+z)^6\le(x^2+y^2)(y^2+z^2)(z^2+x^2) \tag{1}$$ I am stuck to continue.
Hope you can help me prove $(1)$
Also, I am looking for other proofs. Thanks for your interest.