If $a,b,c\ge 0: a+b+c,>0$ then prove $$\frac{\sqrt{ab+bc+ca}}{2}\ge\frac{a^3(b+c)+b^3(c+a)+c^3(a+b)}{(a^2+b^2+c^2)(a+b+c)-2abc}.$$
I'm looking for a simple proof which student could full it in during test time.
I've tried to show it in SOS form and here is what I got \begin{align*} f(a,b,c)&=(ab+bc+ca)\left(\sum_{cyc}a^2.\sum_{cyc}a-2abc\right)^2-4\left(a^3(b+c)+b^3(c+a)+c^3(a+b)\right)^2\\ &=(ab+bc+ca)\prod_{\mathrm{cyc}}{\left( b+c-a \right) ^2}+4\sum_{\mathrm{cyc}}{b^3c^3\left( b-c \right) ^2}\ge 0. \end{align*} It is not nice as I expected. Can we make it more optimal ?
All idea is welcome.